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The knowledge about transonic aerodynamics increased considerably during the last
fifteen years or so. Around 1970 it became clear that the operational efficiency of military
aircraft at transonic speeds could be improved significantly through a better aerodynamic
design based on the application of advanced supercritical wings and favourable interference
concepts. This was in fact the starting point for the development of transonic computational
fluid dynamics, a development that was strongly supported by the increasing need for more
effective and fuel efficient aircraft and the rapid progress made in numerical mathematics
and computer technology. The Fluid Dynamics Panel of AGARD stimulated the develop-
ment of transonic computational fluid dynamics by organizing several meetings and symposia
on the subject bringing the experts in this area together. In 1980 the Fluid Dynamics Panel
concluded that it was highly desirable to describe the state of the art in an Agardograph.
The contents of this Agardograph prove that it was indeed the right time for a comprehensive
summary on transonic computational fluid dynamics. The review clearly indicates, however,
that a large effort is still needed to improve the accuracy of the methods, to decrease the
computation costs, to extend their applicability to real configurations, as well as to make
them more directly useful for aircraft design. It also shows, however, that there is a strong
foundation already available upon which such improvements can be based. It is hoped that
this Agardograph will find its way into the hands of many teams working on the aerodynamic
design of military aircraft whose success is so much dependent on the application of advanced
aerodynamic concepts.

H.YOSHIHARA
B.M.SPEE
Editors

Fluid Dynamics Panel
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1. INTRODUCTION AND SUMMARY

The present AGARDOGRAPH has been written for the applied aerodynamicist engaged in the
transonic computational design of combat and airlift aircraft. Its objectives are to review:
(1) the theoretical fluid dynamic bases on which the computer programs are based;
(2) the near-decade of computational experience with the established codes;
(3) selected aspects of treating the viscous interactions;
(4) computational procedures used in aerodynamic design; and
(5) advanced concepts presently being developed.

In preparing the AGARDOGRAPH, primary responsibility for each chapter was assigned to one or
more authors as follows:

Chapter 2 General theory Mr. J. Slooff
Chapter 3 Existing CTA methods Dr. T. Holst / Dr. W. Ballhaus
Chapter 4 Viscous interactions Dr. H. Yoshihara
Chapter 5 Design procedures Mr. J. Slooff
Chapter 6 Advanced concepts Dr. T. Holst / Dr. W. Ballhaus

Each chapter was then reviewed and commented upon by the other authors, with the prime author's viewpoint
prevailing in case of diverging opinions.

Note that developments later than 1980, including recently revived interests in solving the
Euler equations, are not necessarily covered.

Chapter 2 reviews the formulation of the inviscid transonic boundary value problem. A
hierarchy of approximations is considered starting with the Euler formulation followed by the potential
approximation and several forms of the small disturbance hypotheses. The physical nature of the approxima-
tions at each level is given as a reminder to the numerical aerodynamicist. The necessity of expressing
the flow equations in the proper conservation form is stressed to insure the appropriate shock jump
conditions. The chapter is concluded by a discussion of the difficult problem of drag determination.

Chapter 3 descrines several typical codes presently in wide use summarizing past computational
experience with these codes over a wide spectrum of cases and providing user guidelines to assist in
achieving converged accurate solutions. Symptoms of common numerical difficulties are described together
with their possible cures. Illustrative test/theory comparisons are given with suggestions as to the
causes for discrepancies.

Viable compitational results cannot be achieved in significant transonic flows without
incorporating the viscous effects into the calculations. The state of development of the viscous phase of
the problem understandably lags that of the inviscid phase. Chapter 4 begins with a brief description of
the important viscous interactions arising in the transonic flow over wings and briefly describes a
selective aspect of recent investigations where both planar and three-dimensional integral boundary layer
methods were used. Here the integral methods have been selected since they have yielded reasonable results,
even for separated cases, when coupled to the inviscid codes without significantly adding to the computer
time.

Chapter 5 reviews the recent efforts in the application of computer codes to configuration
design. Applications of hodograph, fictitious gas and inverse codes are given as well as examples of
aerodynamic design by means of numerical optimization. The chapter is concluded with a discussion of the
possibilities and limitations of the various approaches.

Chapter 6 summarizes important advanced concepts in development to extend the capabilities of
the codes, not only in their ability to handle more realistic configurations, but also to reduce the
computing times. Topics include general mesh generation schemes to fit complex configurations and conver-
gence speed-up techniques such as approximate factorization methods, extrapolation procedures, and the use
of multigrid techniques. A short discussion of the algorithm development for vector computers is also
included.

Finally Chapter 7 concludes the AGARDograph with a brief discussion which puts computational
transonic aerodynamics, including future prospects, in a more general perspective.
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2. GENERAL THEORY

2.1 Governing equations and boundary conditions

Viscous compressible flow of a perfect gas, in general, is described by the set of conserva-
tion laws known as the time-dependent Navier-Stokes equations

i
. If we are interested in steady compressible

adiabatic flow at high Reynolds number only, the flow, to lowest order, is described by the (reduced) set
of conservation laws for inviscid compressible flow known as the (steady) Euler equations, while the thin
viscous layers, to first order, are described by the boundary layer equations.

A detailed description of the various forms of (approximations to) the boundary layer equations
and in particular of the various approaches to the turbulence closure problem is considered to be outside
the scope of this AGARDograph; the reader is referred to reference 2 for a recent survey. The problem of
describing the interaction between the thin viscous layers and the outer inviscid flow is addressed in
chapter 4. In this chapter we will consider the equations that describe inviscid (transonic) flow.

2.1.1 Inviscid rotational flow; Euler's equations

Neglecting body forces, steady adiabatic inviscid compressible flow is, in Cartesian coordi-
nates, described by the following conservation laws:
conservation of mass:

T- (pu) + 1- (Pv) + - (pw) = 0 (2.1)

conservation of momentum (Euler's equations):

1(Puv) + L (PU) = 0

x (pvu) + ~ (pv +p) + - (lvw) =0 (2.2)

S(pwu) + 2- (pwv) + L (Pw2*p) = 0

conservation of energy:

x + 1 (pvho) + L (pwho) = 0 (2.3)

In equations (2.1) to (2.3) u, v, w represent the x, y and z components of the velocity vector,
respectively; q is the total velocity and p and p are the pressure and density, respectively. h is the
total enthalphy given by 0

h = e + £ + J q2  (2.4)

o p

e is the specific internal energy given by the caloric equation of state

e = cvT , (2.5)

T representing the total temperature and c the specific heat at constant volume.
The system (2.1) to (2.3/4) for the six uninowns u. v, w, p, p and e is completed by the thermal equation
of state for a perfect gas

p = pRT (2.6)

R-cg-cv being the specific gas constant. Note that the temperature T is readily eliminated by substituting
(2.b) into (2.5). The expression (2.4) for the total enthalphy can then be rewritten as

o= --I- k + I q 2(2.7)y-1 p
y= C /c. being the ratio of specific heats.

In computational transonic aerodynamics the system of equations given above (or simplifications
thereof) are solved for the following boundary conditions':
1. Zero normal velocity at the surface S(x,y,z) of a configuration

q. n = 0 on S(x,y,z) (2.8)

n being the unit normal to S.
2. The Kutta condition of smooth flow at the trailing edges of the wing and other lifting parts of a

configuration. It requires the presence of a surface with a discontinuity in tangential velocity across
it that extends from the trailing edge to downstream infinity.
The surface of discontinuity or vortex sheet S. is aligned with the flow and carries zero pressure jump,

+-
i.e. q.n n 0 on S

w 
and Sw (2.9)

[p] = p+ -p- 0 on Sw  
(2.10)

The shape of the tortex sheet is to be determined as part of the solution.
3. Asymptotically vanishing flow perturbation at infinity

p p. for x2+y 2 z - , (2.11)
P PI

except in the Trefftz plane at downstream infinity where a two-dimensional cross-flow exists around the

vortex sheet.

'. , ! I,
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In most, if not all, practical applications the conditions on the vortex sheet are simplified

and approximated by assuming a fixed shape. On this fixed vortex sheet the simplified conditions are
imposed of zero jump in normal velocity and zero jump in the velocity component that is parallel to
certain prescribed, approximately streamwise directions (preferably coordinate lines) in the sheet, i.e.

[q. nj = 0 on Sw (2.12)

and
q . tI = 0 along prescribed direction t on S. (2.13)

The latter condition implies that the trailing vorticity is constant along lines parallel to t. The
simplified conditions just described are consistent with the assumption of small perturbations. Note also
that flows with leading edge or other extensive boundary layer separations are excluded.

For completeness it is mentioned that some interesting consequences of the Kutta condition for
3-D flows and 2-D flows with shock waves are discussed in references 4, 5 respectively. The implication of
this, being that the flow leaves the trailing-edge tangent to either the lower or the upper surface, is
not recognized in the current computational methods for transonic flow.

Prior to proceeding to simpler and more approximate systems of equations describing transonic
flow it is useful to consider some characteristic features of the Euler equations.

First of all it is important to realize that equations (2.1) to (2.3) are obtained from the
Navier-Stokes equations by setting viscosity and heat conduction equal to zero. An important consequence
of this is that we have removed the dissipative mechanism that prevents the entropy of a fluid particle
from decreasing during its course through the flowfield. For this reason the Euler equations (2.1) to (2.5)
must be supplemented with the additional condition that the second law of thermodynamics must be satisfied.
i.e. the entropy may not decrease along a streamline. The entropy condition has no implications for contin-
uous flows, for which the conservation laws for mass, momentum and energy can be shown i to imply conserva-
tion of entropy. However, satisfying the entropy condition is particularly important for discontinuous
flows, i.e. for transonic (and supersonic) flows with shock waves. Without enforcing the entropy condition
there isI in general, no unique solution, both compression and expansion shocks being possible. As shown
by Lax6 , the entropy or an equivalent additional condition must be enforced to guarantee a unique and
indeed the physically relevant solution, i.e. the one with compression shocks only. Moreover, in order to
obtain the correct shock jumps, it is essential that the flow equations are cast in conservation formG.
We will return to this subject later, in section 2.2. The shock jumps pertaining to the system of conser-
vation laws (2.1) to (2.3) are described by the Rankine-Hugoniot relations'. In terms of normal Mach
number the jump relation is depicted in figure 2.1.

It is further noted that the conservation laws (2.1) to (2.3) can be recombined to yield
various auxiliary relations. A particularly useful example which, however, does hold in regions of contin-
uous flow only, is the generalized Crocco relation

1

Tgrad S + q x curl q = grad ho (2.14)

In most aerodynamic applications we have uniform flow at upstream infinity. It then follows from the mass
and energy conservation equations (2.1) and (2.3) that, even for flows with shocks,

grad h = 0 (2.15)0

Hence, (2.14) reduces to

Tgrad S + q x curl q = 0 (2.16)

Equations (2.15) and (2.16) imply that flows that are uniform at upstream infinity have constant total
enthalpy throughout and, when continuous, are also homentropic (i.e. have also constant entropy throughout)
and irrotational. On the other hand, if the flow is not continuous through the presence of shock waves, it
is no longer homentropic in regions downstream of the shocks and rotation is generated in view of (2.16).

In spite of the fact that the Euler equations offer the most complete description of inviscid,
compressible flow, they do not form the basis of the current well-established methods for transonic flow
computations. The reason for this seems to be that the Euler equations are significantly more complex and
require a significantly larger computational effort than the more approximate flow equations, to be
described hereafter, on which the majority of the currently available computational methods for transonic
flow is based.

Surprisingly, in retrospect, the first technically successful attempt by Magnus Gallaher and
Yoshihara to numerically solve the problem of transonic flow with shock waves was based on the Euler
equations, albeit that the energy equation was dropped and replaced by a relation expressing conservation
of entropy. The properties of this isentropic, rotational flow model have been described at some length by
Van der Vooren and Slooff5.

Magnus et al, in their approach, obtain the steady state solution in the limit for t * of a
time-dependent process which is started, at t = 0, from a uniform flow by impulsively activating the
boundary conditions on the airfoil. Results obtained with this method have been quite satisfactory.
However, the method did not meet wide application due to the fact that the computational effort involved
is prohibitively large for practical purposes.

In recent years, renewed activities can be noticed in the field of developing (more efficient)
numerical methods based on the Euler equations'*). Such activities are motivated in particular by the
requirement to model the strong shock waves and vortex sheets occurring with combat aircraft. However,
these developments have, as yet, not led to large-scale application in transonic aerodynamic analysis and
design.

2.1.2 Irrotational, isentropic flow; the full potential equation

A significant reduction in the number of dependent variables is obtained if the flow is
assumed to be irrotational. It is then possible to introduce a velocity potential 0, related to the
velocity itself by:

*) See also proceedings of 1981 AIAA Computational Fluid Dynamics Conference

.4P
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q = grad 0 (2.17)

the single dependent variable 0 replacing the five dependent variables u, v, w, p and p of the Eulerequations.
The assumption of irrotationality is of no consequence for continuous flows, which, when

uniform at upstream infinity, were shown to be isentropic and irrotational throughout. For (transonic)
flows with weak shock waves the assumption can be justified by considering the jump ES] in entropy across
a shock wave. It follows from the Rankine-Hugoniot relationsi that

Is] = cv 3 (M
2  

1 o)3 n - 1) (2.18)

where Kn in the component of the local Mach number normal to the shock and y is the ratio of specific
heats. Hence the jump in entropy is negligible if Mn is sufficiently close to 1. It then follows from the
Crocco relation (2.16) that also the rotation behind the shock is negligible.

An important property of irrotational isentropic flows, that is immediately obvious from the
generalized Crocco relation (2.14), is that of constant total enthalpy (Eq. (2.15)). Hence the energy
conservation equation (2.3) is automatically satisfied, provided that the mass conservation equation .2.1)
is satisfied. In addition it can be showni , that, in regions with continuous flow, also the momentim
equations are satisfied. In other words continuous, isentropic, irrotational flow is completely described
by substituting (2.17) into the mass conservation equation (2.1), leading to the full potential equation
in conservation form

x +-L (pO 0 (2.19)

In (2.19), the density p is given by the algebraic relation'

1

p= 1 - y-1 M
2 

(02 + 02 + 02 - 1) (2.20)2 - x y z

Note that the velocity (potential) in (2.20) has been scaled by the free stream velocity.
When the solution for 0 is known, the pressure can be obtained from the expression for the

pressure coefficient in isentropic flow'

_I-

=1 [{ 1i IM2 (02 + 2 + 2 1)} - (2.21)Cp I m2 2 x y Z -1(.1

2 -

Discontinuous flows that satisfy the mass conservation equations (2.19) and (2.20) also satisfy the
energy conservation equation but do not conserve normal momentum across the discontinuities. As indicated
by Steger and BaldwinR this implies a wave drag mechanism in the form of a loss of normal momentum across
shock waves.

The shock jump relations of (2.19), in terms of Mach number normal to the shock, are also
depicted in figure 2.1. It appears that the error is less than 8 % if the upstream normal Mach number is
< 1.3.

The requirement that Mn (when > 1) must be sufficiently close to 1 sets certain limitations to
the class of flows that can be treated. Expecting normal shocks to occur in any case on bodies and near
the root of wings (see also section 2.2) we may generalize this requirement by

M2  1 + C, c << I' (2.22)

or, with'

M 2 = _(2.23) I

1 + = M
2 

(1-q 2)

by q 6l+{1 (1-q')} (1 + (2.24)

This can be rearranged to
N1 q±' +41 +0€[] (2.25)

my+1 y+1

or, with y = 1.4,

N! q2 4 0.83 - 0.17 M. + O[c] (2.26)

For transonic free stream Mach numbers, i.e. M. = 1-iJ, 1i << 1, equation (2.26) reduces to

q 1 + c] i+ 1] (2.27)

This illustrates that (full) potential theory is a small perturbation theory for N. - 1.
In practice the requirement (2.22) and its subsequent implications may be somewhat less stringent than
suggested upon the assumption of normal shocks. The reason is that due to viscous effects ("viscous wedge"
effect, section 4) even "normal" shocks are turned into oblique ones. On swept wings the effect of sweep,
at least away from the root and tip, is also to reduce the effective Mn.

Equation (2.19) form: the basls for today's most established procedures for transonic flow
calculations.

In most applications it is encountered in a formi associated with general, non-orthogonal,
curvilinear coordinates E, n, c-:

3L- A) x(2) -L- (! -0 (2.28)
aC , an J ac

where:

_ _ _- .... .. . =- : -
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ix ~y z
J det. ix  nyn = det. [H] = h

-  
(2.29)

x y 4z

h being the Jacobian of the transformation and U, V and W are the contravariant velocity components along
the C, n and C directions, respectively, given by

V u (H] v (2.30)

W w

or

V =[HTHI 0 (2.31)

w 0

the matrix HTH being the contravariant metric tensor
12 

of the transformation.
Abandoning the strict conservation form, a form called "semi-conservative" by Chattot13

,
1 is

obtained if the metric coefficients are written in front of the partial derivatives:

A ¥(pO) + B 2- (pq) + C 2- (pOC)

+. D (POT) + (pC)} + E -(pt,) +2 (po,)

+ F ¥(Pt) + (O )I + G = 0 (2.32)

Equation (2.32) has the advantage that the coefficients A, B ... F depend only on the coordinate trans-
formation and, for a given (body fitting) coordinate system, can be calculated once and for all. The
function G depends also on the velocity components

13
. Note that the derivation of (2.32) does not require

the assumption that the flow is continuous. This would mean that the jump relations of (2.19)/T2.28) are
retained, provided that the coordinate transformation is regular.

In several applications of full potential theory an alternative, non-conservative form of the
full potential equation, known as the quasi-linear form

1 
is encountered:

(c2 - 01)0. (c2 - O2)o + (c2- 0') - 2 xy 0 -2 0 z -2 0zxz = 0 (2.33)
x x y yy z zz xy y yz xzx

The local speed of sound c in equation (2.33) is given by

c = 00 - 1 (02 + 02 + 02) (2. 34)
2 x y z

cO representing the stagnation value.
A convenient form of the non-conservative equation (2.33) that is suitable for application in

general curvilinear coordinates C, n, C is"5 (see also Mangler/Murray1 6 and Forsey/Carr17 ):

c2 {(Uh)& + (Vh)n + (Wh) - h(UQE + V + + WQ) = 0 (2.35)

where
q = (u2 + v2 + w2) (2.36)

U, V and W are again the contravariant components of the velocity vector q in the curvilinear coordinate
system and h is the Jacobian of the transformation (see (2.29) to (2.31)).

Yet another possibility'
3
',
1 

is to write

AtE + BOnn + CO + DOan + Ec + FtnC " G = 0 (2.37)

where A, B ... G are now all functions of both the metric coefficients and the velocity components.19 0 20
The first transonic full potential flow calculations by Steger/Lomax and Garabedian/Korn 0

for the 2-D planar case, Jameson2 1 for axisymmetric flow and Jameson , Jameson/Caughey" for 3-D wing
flow were based on equation (2.37) or variants thereof. Note that, according to Lax, solutions of
(2.33/35/37) will in general not exhibit the correct shock jumps.

Finally we give the full potential equation in (non-conservative) perturbation form':
( , -M2), + .%y + (pZZ = - , + 02. 1 _ 2 ,l + (2
4• W f (Y-1)t+x + 2 x 2 y J M=Xz

2 y 2 ( 2dy2

4 (y_1).pX + Y-p:+ 1 (2.38) '

+2J4(14~)$3( +2M (4pX2 + 42M
2
(DD

Equation (2.38) can be obtained from (2.33), (2.34) upon introduction of the perturbation velocity
potential tp, defined by

*= x + (P (2.39)

We shall use (2.38) in the next section in order to arrive at certain small perturbation approximations.
The bounday conditions that go with (2.19) or any of the alternatives are easily derived~~from (2.8) to (2137, i.e. we have

I on the surface S(x,y,z) of a wing or body:
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grad .n = 0 (2.40)
- Kutta condition and other boundary conditions on the trailing vortex sheet Sw

[grad n 1=0 (2.41)

to1 = r(y) (2.42)
where r(y) is the value of [0] at the trailing edge.

- at infinity, with the flow at infinity parallel to the x-axis:

Sx for x
2 
, y2 + z

2  
. (2.43)

except in the Trefftz-plane at downstream infinity where the potential satisfies the Laplace equation
for two-dimensional flow around the trailing vortex sheet

*yy + 4 = 0 for x + - (2.44)

Note that, in order to avoid the singular behaviour of 4 at infinity, it may be convenient to
introduce a reduced or perturbation potential = O-x as the dependent variable. Also, the infinitely large
physical domain is usually replaced by a finite computational domain through a convenient coordinate
transformation or by simply truncating the physical domain.

2.1.3 Transonic small perturbation theory

General
For wings and airfoils a further and significant simplification of the problem can be obtained

if these bodies are assumed to be thin with respect to the local chord and to have only a small inclina-
tion relative to the free stream. It is then possible to approximate the boundary conditions by satisfying
equation (2.40) in the wing mean plane (z = 0) rather than on the actual surface of the wing itself. With
the wing surface given by

z = F(x,y) = 6f(x,y), 6 << 1 (2.45)

and utilizing Taylor series expansion from the plane z = 0 for the velocity components, i.e.

0x(x ,y,z) ; 0x(x,y,o) + Zoxz(x,y,o 0[z2 ] , (2.46)

etc., equation (2.40) can be approximated by

*1n + yny + znz + Z(n + yzny + Ozznz) + ... = 0 on S(x,y,0) (2.47)

or, since

nx aF
n ax xz

(2.48)
ny 3__Z=a F=6f
nz  ay y

and introducing normalized perturbation quantities (2.39), by

(z + Sfkzz + = + Vx + .... )6fx + (CPy + ...)6fy on S(x,y,0) (2.49)

It is easily verified that, if the lowest order approximation, in terms of 6, to (2.49) is to be non-
trivial, (p must be 0(61.

An important consequence of and indeed the main motivation for the small perturbation
assumption is that the approximate planar boundary condition allows easy numerical implementation in
simple Cartesian mesh systems. Hence the complexity of setting-up and utilizing a boundary-conforming mesh
and curvilinear coordinate system or of cumbersome interpolations in non-boundary-conforming Cartesian
grids is avoided. This, however, at the cost of a less accurate flow model. The latter is particularly
true at the leading edge of blunt-nosed wings (or bodies) where fx, fy - -, irrespective of 6.

An additional but less significant advantage of the small perturbation assumption is that the
governing equation for potential flow can be simplified accordingly, thereby reducing, to some extent, the
amount of algebra involved with satisfying the discretized form of the flow equation. In the literature on
the subject several alternative forms of transonic small perturbation (TSP) equation may be found. They
can be categorized according to several different criteria. One way is to distinguish between formulations
derived from the conservation form (2.19) of the full potential equation and formulations derived from the
non-conservative form (2.33/38). Another is to distinguish between various possible assumptions concerning
the asymptotic structure of the flow field (as 6 - 0), with their related classes of geometry, and more

4 heuristically guided choices of terms in the TSP partial differential equation. In the following discussion
we will concentrate on TSP equations that exhibit the preferred proper conservation form and that can be
derived on the basis of consistent asymptotic reasoning. Other formulations will be mentioned more briefly.

Equations
As pointed out by Van der Vooren et al2 4, proper transonic small perturbation approximations

to the full potential equation in conservation form can be obtained by substituting a properly truncated
series expansion of the expression (2.20) for the density p into equation (2.19). In terms of perturbation
velocity potential this lads to

3-(2-y)M
2  -

[P# -~x . [p(l44iX)J - I - - 2 S- - y M -?. . ..... x[ yly*1 +2yly " 9y -N"e'1 9 .. y (2.50)

[PIZ . [PZ]z_ [10Z - xz ....Z

x mm zmm mmmmlz ~ mm mm
mm mmmm m mm mm
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From this point one may proceed in several ways, depending on additional assumptions with respect to the
asymptotic behaviour of the geometry and Mach number of the problem which determine where the series
(2.50) may be terminated. The number of possibilities is limited by the requirement that the assumptions
should not lead to trivialities or contradictions.

One non-trivial formulation is obtained by introducing the stretched coordinates

=t. 1/3y
y 6/ y 

(2.51)
\= 61/3z

and assuming 1-M
2 
to be of 0[6 /3]. Because tpz is O[S], it follows that tP is 016213]. The lowest order

approximation to'(2.19) is then

-( 3-(2-X .2 21+ [Ipy]y + = 0 + 0(62] (2.52)

1 .2 "_ . " !

in which all terms are asymptotically of equal magnitude Of[6 o at

that, asymptotically, the wing planform is described by S(x,6 2) = 0. Hece, equation (2.52) is valid

for wings of vanishing thickness 6 * 0, with sweep angle vanishing like 6 and aspect ratio tending to
infinity like 6-1/ at Mach numbers approaching 1 like 1+62/3. It can also be derived for bodies of
vanishing fineness ratio 6. Equation (2.52) is the correct conservative counterpart of the classical
Guderley-Von Karman TSP equation (see, e.g. Spreiter

2
s)

The latter is obtained when the scaling (2.51) and the assumption 1-M = 0[62/3] are introduced in the
non-conservative form (2.38) of the full potential equation.

The first technically as well as econorically successful computations of transonic flows with
shock waves by Murman/Cole

26 
and Murman/Kr 27,20 for the 2-D planar case, Murm and Bailey29

foMusmercfowadBie/tgranl'upp Ku3Muran adBie
for axisymmetric flow and Bailey/Steger

3 °
, Ballhaus/Bailey

3
1 and Newman/Klunker for the case of 3-D wing

flow were based on equation (2.53). Recast in conservation form equation (2.53) was used by Bailey and
Ballhaus44.

A different result is obtained if the stretching (2.51) is adopted for the z-coordinate only
and I-M

2 
is assumed to be of 0[1]. This leads to

24

1-!,,- i{3-(2--y)M
2 )M cp

2  M'2- + [,p -M
2
CI 00 )(.4

Sv M ] I xyy + L =0+06(2.54)

It should be noted that if equation (2.54) is to represent an asymptotically consistent approximation
there must hold

[(1-M2) x x + [,y]y = 0[64/1] (2.55)

while xx and k3y, themselves are each 0[62/3]. The implication of this becomes clear if it is realized
that for a yawed-wing of infinite span there holds

-tan
2 

A +y = 0 (2.56)
-tn xx yy

where A is the angle of sweep. Comparing (2.55) and (2.56) it follows that (2.54) represents an

asymptotically consistent approximation only for wings of vanishing thickness, 6 - 0, the planform of

which approaches that of an infinite yawed wing of sweep A at (supersonic) free stream Mach numbers
approaching the value

M. = [I + tan
2 

A + 0[62/3]1 (2.57)

Equation (2.54) is known as the NLR equation
2
4. It has also been advocated by W. Schmidt of Dornier

3 3
.

The jump relations of (2.52/54) in terms of the normal component of the local Mach number are

also given in figure 2.1. Note that the accuracy of the TSP approximation deterioriates rapidly forMn > 1.15*) " .

A non-conservative counterpart of equation (2.54) is obtained by introducing the relevant

assumptions into the non-conservative form (2.38) of the full potential equation:

((-M
2
) - (y+1)MtxD]Dxx + [1-(y-1)N

2
CD lCD - 2 M' + = 0 (2.58)

Equation (2.58) was first proposed by Lomax et al of NASA Ames and has been used with some minor modifi-
cations by Albone et al

s 
and Ballhaus et al 

6 . 
The latter authors have also recast eq,tation (2.58) in

conservation form.

Further asymptotically consistent approximations to the full potential equation in conserva-

tion form can be obtained by avoiding any of the scalings (2.51). The general second order accurate

conservation form is
33
, with P - 0[6]:

[(1-M!)%~ - if3-(2-y)M
2}MCp 2 

- Ip 14
2
CD
2 

- .C
2  

[(p -14
2
(p Cp ] + [0D 14CIV 0 + 0[611 (2.59)

X - y Z X y I x- y y z -x z z

*) Mn, in this case, has been related to the "canonical" form

_1M2 )(p +C C 0&EM W + 'Pnn + zz 
=

of the relevant TSP equation through

M= cos A',

A' being the angle between the shock and the principal axis (&-direction), leading to

[XnJ n - 1

m ,m , m m mllzmnmm~ll~llll I m
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If I-M2 is assumed to be of 0[6], the lowest order approximation to (2.59) is

(y]y + [(P,], = 0 + 0(62] (2.60)

Using (2.60) and abandoning the strict conservation form, equation (2.59) can be reduced to

1 _M2 )M
2
)M

2
2 M

2
,p
2 
_ M

2
(2
2
] + [tpy]y _ M2 + (P M

2
,24 ( 0 (2.61)

or
((1-M 2 ) x - i13-(2-y)M.})M

2 2
] - 2 Mtxyp - 2 M.

2
4k2 + [Py]y + [(%] = 0 (2.62)

-yx xx yy z

Note that the lowest order approximation (2.60) of (2.61/62) is the equation of slender body theory
37

.
This indicates that equation (2.61/62) represents a consistent second order accurate approximation only
for slender bodies and slender wings (i.e. low aspect ratio wings or highly swept wings that are typical
of fighter and supersonic aircraft configurations) at Mach numbers approaching unity. Together with the
fact that equation (2.61/62) can be derived only by abandoning the strict conservation form this indicates
further that, basically, equation (2.61/62) is valid for (subcritical) flows without shock waves only.
It is a non-linear equation, however, and as such capable of producing shocks.

A variant of (2.62), that can be obtained by introducing the relevant assumptions into (2.38)
has been proposed by Hall and Firmin

3e 
of RAE. However, to the present author's knowledge neither this

equation nor (2.61/62) has ever been used in actual calculations. The main reason for this seems to be
that the term tztx, gives rise to numerical difficulties near blunt leading edges 

e
.

Apart from the TSP equations given above, that can be derived on the basis of asymptotically
consistent reasoning, several other forms, based on more heuristic arguments may be found in the literature.
For example, Klunker and Newman" use the non-conservative Guderley-Von Karman equation (2.53) with the
third order term J(y+i)tqp5x added in order "to better approximate the critical speed where the equation
changes type from elliptic to hyperbolic". Similar reasoning has led Boppe 

0 
to add the same term to the

non-conservative equation (2.58). Still other terms have been suggested by Schmidt' 1,4
2
. Yet another way

of empirically improving the agreement between results of TSP theory and more complete formulations,
introduced by Krupp 

2 7 ,  
has been to modify the power of the coefficient M

2 
of the non-linear terms in

equation (2.53)44 or equation (2.58) '
.

It is the present author's opinion that such empirical additions or modifications of the basic
TSP equations are unnecessary if the correct conservation form (2.52/2.54) or (2.59) of the perturbation
mass flux equation is used

2
'.'3. The point is illustrated in figure 2.2 which, assuming infinite yawed

wing condition, i.e.

42 = -vx tan A

4y2= 2xx tan
2 
A (2.63)

42xy
= 

-pxx tan A

gives the critical chordwise perturbation velocity as a function of Mach number for several TSP forms and
, sweep angles.

In spite of the fact that the asymptotic arguments presented above suggest that each of the
equations (2.52/53), (2.54/58), (2.61/62) is valid only in a specific narrow range of transonic
(i.e. M a 1) or supersonic Mach numbers and wing planform shapes, results obtained by means of TSP theory
have been found to be surprisingly accurate for Mach numbers well below 1 and widely varying wing plan-
forms 34, , 5 0,'.'. ,'S, '. The reason for this seems to be that all TSP equations incorporate the first
order accurate Prandtl-Glauert equation

[(I-M1x
2
) ]x + [(y]y + (t]Z = 0 (2.64)

which is valid for subcritical flow about slender bodies and thin wings of arbitrary planform at arbitrary
subsonic (or supersonic) free stream Mach numbers. The meaning of this is that TSP theory can also be con-
sidered as an extended form of first order accurate subsonic (or supersonic) small perturbation theory
with certain non-linear terms added in order to model shock waves. Which terms exactly are added determines
how well shock waves are modelled. As shown by Van der Vooren et al 24 (see also section 2.2), equation
(2.54) is particularly suitable in this respect. Second order accuracy is obtained only in the special
asymptotic conditions mentioned above.

Boundary conditions

Surface boundary conditions to the TSP equations may be derived from those of full potential
theory according to two different viewpoints. The convential way is to start out from the velocity
boundary condition (2.40) leading to (2.49). With the stretching (2.51) this gives

iz = 
6
fx + xafx 

+ 
0([?/3] on S(x,y,O) (2.65)

which is a correct wing boundary condition to the Guderley-Von Karman (2.53) and the related TSP equation
(2.52).

The corresponding boundary condition for a slender body can be written as
n + pnx + 42n + zn 0 on S(x,y,z) (2.66)
x y
[6] [ S/3] [6] (6]

which isof course, identical with the exact boun4ary condition for bodies,
Since all terms in (2.52/53) are 0[64-], it can also be argued that the lowest order approxi-

mations

4p 6f on S(x,y,0) (2.67)

for wings and

IN1ON



9-

nx + ny + (Pznz = 0 + 0[6511 on S(x,yz) (2.68)

for slender bodies are sufficient. The latter is also true if TSP theory is viewed as an extended
form of first order subsonic small disturbance theory.

Adopting the stretching (2.51) for the z coordinate only, (2.49) takes the form

% = 6f x + cx6fx + py6fy + 0[6711] S(x,y,0) (2.69)

[6] [6] [61 /1]  [61 /3]

which represents a boundary condition to the NASA Ames (2.58) and NLR (2.54) equations. However, here also
it can be argued that the simpler form (2.67) is sufficient.

The wing surface boundary condition corresponding to the general second order accurate conser-
vation form (2.59) is

z + O°zz = 6fx + c2xtf x + CPy6fy + 0[63] on S(x,y,0) (2.70)

[6] [62] [6] [62] [62]

Note that the RAE equation (2.61/62) would also require this boundary condition, which then, because of
(2.60), could be reduced to

Cz = 6fx + Dx6fx + (CDy6f)y + 0[63] (2.71)

The viewpoint can be taken (Brune and Rubbert
47

, W. Schmidt
3
) that it is the normal component of the mass

flux vector pq rather than the normal component of the velocity vector that should vanish at the surface.The two formulations are completely equivalent in full potential theory but not in small perturbation

theory. The point may be illustrated by substituting the series expansion (2.50) for the mass flux vector
components into the mass flux form

pq n = 0 on S(x,y,z) (2.72)

of the wing surface boundary condition, which leads to1 + (IM2)CD _ 3-(2-y)Ma, M2(2 
_ 2 2 

- M

I I M 2 ) X 2 M X - M .2 2 + . . .] x +

...Iny +[z _2 + .. ]n + 0 on S(x,y,O) (2.73)
+[w~ M, + + - MCxzs

In constructing further approximations to (2.73) Schmidt
33 

does not make use of the argument that in small
perturbation theory nx and n are 0[6] on wings; nz being 0[1]. If we do use this knowledge,equation (2.73)can, with the stretching (2. 1) and the assumption that I-M2 = 0[62/3], and using (2.48), be reduced to

go" - M 2(X (Z =  6i X +  [6713] on S(x,y,O) (2.7 4)

n x + ( 1-_M2_x)Pyny + (1I-M2(px)Czn z = [ 6 7
/ 
3
]  

on S(x,y,z) (2.75)

[6] [ 6]1 + [65
/ 3]
1 [6] + [6s/1]

Equation (2.74) is to be compared with (2.65). Note that they are identical to 0[6] but that the terms of
0[61

/3
] differ. As boundary conditions to (2.52) equations (2.74/75) are to be preferred over (2.65/66)

because they are consistent with a (mass) conservative formulation. However, it can, again, be argued that
the simple forms (2.67/68) are sufficient.

From equation (2.73) the corresponding (wing) boundary condition to the NLR and NASA Ames
equation (2.54), (2.58) is found as

(1- 2
x)(p = 6

fx + (1-Mj1)Cx6f + CDy6f + 0[61 / ] on S(x,y,O) (2.76)

I [6]+6 s/ 3]  [6] [f /'  65/3]

which is to be compared with (2.69). Recalling that equation (2.54) can be derived only for conditions
approaching those of an infinite yawed wing, i.e.

Cy = -x tan A + 0[6 /
] (2.77)

and

fy = -fx tan A + 0[6213] (2.78)

at free stream Mach numbers satisfying

1-M! + tan
2 
A = 0[62/3] (2.79)

(see (2.57)), we have

(1-M?)Dx6f + yd6f = -tan2 AC x6fx + tan2 A kxf x + 0[671] = 0 + 0[6,11 )  
(2.80)

y yx xf
Hence, (2.76) reduces to the same form (2.74) (or (2.67) if the lowest order approximation is adopted) as
the boundary condition to the Guderley-Von Karman type equation. Using similar arguments it is alsc
possible to derive the "mass flux" equivalent forms of the boundary conditions (2.70) and (2.71) to the
general second order and RAE equations.

The main limitation of TSP theory, i.e. the singular behaviour of the solution at blunt
leading edges is readily apparent from, e.g., equation (2.67) or (2.73); at the leading edge for x + Xle
we have fx * . and hence cpz + -, violating the small perturbation assumption. Note that this is not a
typical transonic problem; it is also present in subsonic thin airfoil theory.

/
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Several ways are mentioned in the literature to reduce the problem in actual numerical
calculations. Amongst these are:
- longitudinal positioning of the leading-edge between mesh points4

0

- vertical positioning of the wing mean plane (z = 0) in between mesh planes while determining ko in
z = 0 through extrapolation from the first mesh lines above and below z = 028,43,31,41,4

- empirical "tuning" of mesh spacing near the leading edge
s2

- empirical modification of section leading edge geometry S3,54.
However, none of these "recipes" seems fully satisfactory.

With (2.39) the boundary conditions in the plane z = 0 representing the trailing vortex sheet
and the Kutta condition are rapidly found from (2.41/42), i.e.

[(ozl 0 on Sw(xy,O) (2.81)

trp]= [,O]te = r(y) on Sw(x,y,O) (2.82)

At infinity we have

(P 0 for x
2 

+ y
2 

+ z
2 
- 0 (2.83)

except in the Trefftz-plane where (p must satisfy the Laplace equation for two-dimensional flow around the
trailing vortex sheet

(Py 
+  

=zz = 0 for x - + - (2.84)

In the literature two alternative approaches to the problem of satisfying the boundary condi-
tions at infinity may be found. One is to reduce the infinitely large physical space to a finite computa-
tional domain by means of relatively simple coordinate stretchings

3 
4 2 6. The other is to position the

outer boundary of the computational domain at a large, but finite distance from the wing or body in the
physical space and apply so-called far field boundary conditions at this outer boundary

s
I
, 

41. These
far field boundary conditions, derived from subsonic theory, can be either analytic or numerical. Analyt-
ical expressions for the potential in the far field at an asymptotically large distance from the configu-
ration have been given by Klunker4

e
. Chen et al4

9 
use a numerical (panel) method to solve a reduced,

linear equation (Prandtl-Glauert) in the far field.

Pressure formulae

The conventional way of obtaining "consistent" formulae for the pressure is to expand the
expression (2.21) for the pressure coefficient into a power series which is then truncated appropriately.
With the stretching (2.51) and 1-M2 = 0[6213] this leads to

Cp = -2 Ox + 0(62] (2.85)

as a pressure formula to the Guderley-Von Karman ty e equations (2.52/53). For the LR2/NASA Ames type
equations (2.54/58), with z-stretching only and 1-M. = 0[1] it leads to

C = -2 (x - (1_M 2 I + ( + 0[62] (2.86)

[62'/3] [64'/"] [64v/3 ]

which, because of (2.77), (2.79) also reduces to (2.85).
The corresponding expression to the general second order accurate equation (2.59) is

(1-N
2

_ (pp 2 9+0[6 1]
=-2 ( - ( x," (2.87)

p x z

[6] [62] (62] [62]
For 1-M2 = 0t6], (RAE equation (2.61/62)), this reduces to

C= -20x -  2 _ pl([' (2.88)

Schmidt33 has proposed that the pressure (coefficient) be computed by substituting the approximation (2.50)
for the mass flux into a (non-conservative) form of the momentum equation. This procedure leads to addi-
tional higher order terms in the expression for C, that, however, cannot be justified on the basis of
asymptotic arguments.

2.2 The representations of shock waves
I
4A most important aspect of computational models for transonic flow is the ability (or
.4 ' inability) to model shock waves adequately. Xn this respect it is useful, when considering a computational

model for transonic flow, to distinguish between the following questions:
i) what type of shock waves (normal, oblique, weak, strong) must be represented by the model partial

differential equation (PDE)?
ii) how well are shock waves represented?
The answer to the first question is determined primarily by the type of flow problem that must be solved.
The answer to the second question is determined by the type of equation solved (TSP, FP, Ruler) and also
by numerical aspects.

2.2.1 Shock systems on wings in transonic flow; jump relations

The systems of shock waves that may occur on wings in transonic flow have been described by,
e.g., Rogers et als and Raines". Figure 2.3 shows, schematically, the shock system that occurs most
frequently on transonic wings. Three types of shock wave my be distinguished.

i) outboard shock; a "strong" (supersonic - subsonic) shock of the type that occurs on an infinite yawed
wing

ii) forward shock; a "weak" (supersonic - supersonic) shock, with, approximately, infinite yawed wing
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conditions upstream and flow parallel to the plane of symmetry (or -,dy side) downstream
iii) rear shock; a "strong", normal shock that is also approximately normal to the free stream direction

(a special case of i).
The suitability of the various model PDE's, mentioned in the preceding section, in representing these types
of shock waves can be judged by considering the various jump relations. Since each of the model PDE's can
be written in the general conservation form

[FI x + [F 2y + [F3]z = 0 (2.89)

the jump relations can be covered by the general expression

IF1 nx + [F2Iny + F31n z = 0 (2.90)

where n , n and n are the components of the unit normal to the shock. F1 2 can be related to the
conserveioK form of the various equations. The jump relations, in terms o ?he chordwise perturbation
velocity, according to several model PDE's, for the three types of shocks, are compared in figure 2.4.
For this purpose the essentially non-conservative Guderley-Von Karman, Bailey/Ballhaus

36
, RAE

35,
4
5 

and
Boppe"

0 
TSP equations were recast in conservation form. In all cases the shock has been assumed vertical,

i.e. nz = 0, and f z has also been assumed zero. Figure 2.4 (see also Van der Vooren et a1
2
4) illustrates

that for the modeling of swept shock waves, and in particular "forward" shocks, by means of TSP theory, it
is essential to include the CDpC(p - and CD xp - terms in the partial differential equation. It is also
apparent that the use of the correct perturbation mass flux conservation form, such as equation (2.54)
should be preferred.

2.2.2 Artificial viscosity and asymptotic shock layer structure

It was mentioned in section 2.1.1 that the problem of inviscid transonic flow does, in general,
not have a unique solution and that, according to Lax6 , the entropy or an equivalent additional condition
must be enforced to guarantee a unique and indeed the physically relevant solution, i.e. the one with
compression shocks only.

One well-proven way to guarantee a unique solution is the introduction of "artificial
viscosity". The artificial viscosity may either be implicit, i.e. be the result of the spatial discretiza-
tion scheme chosen (Murmin/Cole

2
6 and related work) or explicit, i.e. be in the form of additional terms

to the governing partial differential equation (JamesonSSand related work, Chattot"). Depending on the
precise form of the artificial viscosity terms the explicit and implicit formulations may be equiyalent.

For example, Murman's
26,27 

upwind difference scheme is equivalent to adding a term of the type

- AX " [{1IM2 - (Y+1)M
2
(C )p] (2.91)

ax 22-x xx

to equation (2.53) and Jameson's
22 

"rotated" difference scheme is equivalent to adding a term of the type

- h(c
2
-q2)Oss s  (2.92)

to the full potential equation (2.33). In the last expression s is measured along streaml*nesand h is a
small parameter that is identical with or proportional to the mesh size. The derivatives
respectively, are usually, but not necessarily (Chattot's), approximated by means of upwina di ferences.
The effect of adding artificial viscosity to the partial differential equation is not limited to elimina-
ting expansion shocks from the solutions. It also changes the type of the PDE from mixed elliptic/hyper-
bolic to parabolic-like . As a result shock waves are represented by (thin) layers with high velocity
and pressure gradients rather than discontinuities.

Considerable insight in the relation between artificial viscosity and shock layer character-
istics can be obtained by means of asymptotic analysis, yielding analytical solutions for the velocity
profile inside the shock layers for vanishing mesh width

7 ,S
o. Figure 2.5 presents normalized asymptotic

shock layer solutions for a normal shock and a 450 weak oblique shock according to the Murman/Jameson type
of artificial viscosity. A remarkable feature of this type of artificial viscosity is that for
supersonic - subsonic shocks the asymptotic shock layer solution does not exist downstream of the shock.
It suggests that this type of artificial viscosity must be switched off in the subsonic part of the flow
field, which is exactly what is being done in the current finite difference methods. Note also that, in
case of the normal shock, 90 % of the shock jump is "smeared" over about 3 meshes while, in agreement with
finite difference experience

27
, the swept shock takes 10 or more meshes. As a consequence (weak) oblique

shocks, as such, are difficult to recognize in results of the current computational methods for transonic~flow.
As will be discussed in more detail in chapter 6, variants of the artificial viscosity concept

as applied to the conservation form of the full potential equation, known as artificial density or
artificial compressibility methods, have been developed in recent years. From a computational point of
view the artificial density methods have certain advantages. However, the shock layer characteristics are
essentially the same as those of the Murman/Jameson type of artificial viscosity. For an excellent
treatise of the subject the reader is referred to Hafez et a1

59
.

2.2.3 Conservative versus non-conservative formulations

As mentioned already in section 2.1.1, Lax' has shown that (hyperbolic) partial differential
equations must be discretized in conservation form in order to obtain the correct shock jump in the case
of vanishing discretization error. For transonic flow computations, in which artificial viscosity is added
in the supersonic part of the flow field only, this means that both the basic partial differential equation
and the added artificial viscosity terms must be discretized in conservation, i.e. divergence form
(Jameson

23 
,$,6,). For example, one should add a term of the type

- [yh(c 2-q2)# (2.93)--)ss
rather than (2.92), where v is a switching parameter having the value 1 in the supersonic part of the flow
field and 0 in the subsonic part.

I i!
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When applied in finite difference apvroximations such a scheme can be shown to lead to differ-
ence operators that are equivalent with Murman's I parabolic and shock-point operators at the sonic line
(2D) or sonic surface (3D) where V switches from 0 to 1 or vice-versa.

In the literature one can also find formulations in which the artificial viscosity is added
in divergence form but the basic partial differential equation is discretized in a non-conservative form,
such as the quasi-linear form (Bauer et al6

2
, Caughey and Jameson's-"). It can be shown

3
, that the jump

relations implied by such formulations are not unique (even for vanishing mesh width) but depend on the
precise location of the finite difference mesh relative to the shock position. However, as illustrated by
figure 2.6 for a one-dimensional full potential flow model, the possible discrepancy with respect to the
correct, fully conservative result is small, in particular for M 1.3.

The mesh-dependence of the shock jump relation is rather dramatic when neither the basic PDE
nor the artificial viscosity are discretized in conservation form. As illustrated by figure 2.6 the
numerical (finite difference) solution may then range anywhere between sonic velocity just downstream of
the shock and the correct value, depending on the precise position of the shock relative to the finite
difference mesh. The situation is a result of the fact that mass is not conserved across shock waves,
leading to spurious sources along the shock. A similar situation can be shown to exist for non-conservative
TSP formulations. Although such mesh dependence is clearly very unsatisfactory if not unacceptable from a
computational fluid dynamicist's point of view, the situation, for the applied aerodynamicist, is somewhat
confusing because of the fortuitous circumstance that in practice the results of non-conservative inviscid
flow computations are generally in better agreement with experimental results than those of quasi- or fully
conservative schemes. The reason is that both the spurious sources introduced by the non-conservative
schemes as well as viscous (shock-boundary layer) interactions tend to reduce the shock strength relative
to the correct inviscid flow value

4
4,

6
. However, the mechanisms are totally different. As discussed in

more detail in chapter 4, improvement of results due to (proper) addition of viscous effects (displacement
thickness) via the airfoil or wing and wake boundary conditions may be expected for conservative schemes
only.

With the objective of obtaining shock velocity and pressure jumps that are in better agreement
with the Rankine-Hugoniot relations yet another formulation has been devised by Collyer and Lock

6 5
. In

their "partially conservative" scheme Collyer and Lock take a weighted average of the non-conservative and
the quasi-conservative difference operators at the shock. Although the mesh dependence of the solution has
been reduced as compared with the non-conservative scheme (Fig. 2.6) the scheme can still be criticized
for not converging to a unique solution in the limit of vanishing mesh size.

2.3 Drag

While the capabilities of computational methods for transonic flow with respect to the
prediction of lift and pitching moment are seldom questioned a controversial subject in (approximate)
transonic flow calculations has been the subject of drag66,1 ,5. Because the prediction of drag is an
important item of airplane design and analysis it seems appropriate to pay some attention to the (potential)
capabilities of the current computational models for transonic flow.

In inviscid flow, the drag of a body consists of induced (or vortex) drag and wave drag only,
both constituents being felt in the form of (normal) pressure drag (see also Fig. 2.8). This pressure drag
can be determined, in principle, by integrating the streamwise component of the normal pressure force
around the body, a feature contained by most computational methods for transonic flow. However, this
procedure has a number of shortcomings. First of all it is generally difficult to perform the integration
with sufficient accuracy, unless a very large number of mesh points is used1 0 '6 7. Secondly, by evaluation
of the pressure integral only, it is impossible to distinguish between wave drag and induced (vortex)
drag, which is highly desirable from an applied aerodynamicist's point of view.

Separate evaluation of the pressure drag contributions is possible by applying the momentum
conservation theorem to contours of the type sketched in figure 2.7",3

67 . 
For the x-component of momentum

this leads to

[pnx + (p.n)u]dS = 0 (2.94)

S
or, since, in inviscid flow,

[pn x + (T.n)uldSB = D (2.95)
s B

to D=-f [Pn, + (-) dshk f Pn

Sshock 2 wake x wake

- [pnx + (p.n)uldS() (2.96)

Note that these expressions are equally valid for full inviscid (Ruler), full potential or transonic small
perturbation theory. In the former two we have

pq.n - 0 on SB  (2.97)

because of the boundary condition, so that only the pressure integral contributes to D. In the TSP case
with planar boundary conditions we have

nx -O

and on z - t0 (2.98)

q. n - 6f

where n is now the (inward) normal to the plane z - 0.
In inviscid flow (without boundary layer modeling) the 2nd integral in (2.96) is always zero.

The first integral is zero in the case of the exact equations of inviscid motion (Ruler equations, conser-
vation of momentum) but it constitutes the wave drag in potential flow l '5 . If required it can be rewritten

Monse
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in terms involving only the direction cosine and flow quantities just upstream of the shock
s
.

The third integral in (2.96) is most easily interpreted in the limit that the contour of
integration S(.) is at an infinitely large distance from the body. In that case, for subsonic free stream
Mach numbers, only the part of S(.) at x = + (Trefftz plane) contributes to the integral (if the latter is
expressed in terms of differential quantities, relative to the free stream). I.e.

- [pnx + ( .)u]dS() = - f ((p-p.) + (pu
2 -pu2 )]dydz (2.99)

S- x =px+( ;ud() f ~-

In potential flow, with or without shock waves, this integral contains only the induced or
3,67vortex drag and can,upon certain approximating assumptions, be reduced to

f = - [ 1$]. w dy = D. (2.100)
S Sn.l() Swake

When shock waves are present in inviscid rotational flow (Euler equations) the integral over S(,) also
contains the wave drag associated with the loss in total pressure and increase in entropy across the shock
wave(s). The wave drag can also be expressed in terms of an integral over the shock surface involving the
jump in entropy across the shock'

0 
or flow quantities just upstream of the shock only

5
. In practice,

evaluation of the (approximate) vortex drag integral (2.100) does not pose large difficulties. More problem-
atic is the determination of wave drag through integration along the shock surface, in particular in
situations with complex shock patterns involving weak supersonic - supersonic shocks"

. 
The difficulties

involve shock detection as well as the determination of the jumps, both being hampered by the fact that,
due to the artificial viscosity, the shocks are smeared over several mesh widths.

Given the situation just sketched, the most convenient way to distinguish the inviscid
pressure drag between vortex and wave drag is to determine the vortex drag by means of Trefftz-plane
integration and the total inviscid drag by means of body contour integration. Provided the latter can be
performed with sufficient accuracy, this procedure should, through subtraction of the vortex drag, provide
a reasonable estimate of the wave drag.

It should be mentioned that the analysis given above holds only for fully conservative formula-
tions. The spurious mass sources at the shock surfaces in non-conservative formulations affect the first
as well as the third integral in (2.96). Because mass is not conserved across shocks, pq, in the first
integral, jumps in a non-conservative formulation, whereas it is continuous in a conservative formulation.
The third integral, over S(_) contains a contribution, associated with the fact that

p .n dS( 0 (2.101)

in a non-conservative formulation, whereas it is zero in a properly conservative formulation.
Bauer et a1

61
"6
8 

state that, in a non-conservative formulation, the drag as obtained by means
of body surface pressure integration should be corrected for the mass generated at the shock by a term of
the type (2.101). This statement is hardly relevant for two reasons. Firstly, because their conclusion is

based on consideration of a path of integration that does not exclude the shock wave (as it should because
of the discontinuities at the shock). Secondly because in a non-conservative formulation the shock jump
(and hence the apparent mass production at the shock) depends on the precise position of the shock relative
to the mesh-points. As a result the wave drag in a non-conservative formulation is also non-unique and
meth-dependent.

When the effect of the boundary layer is modelled (chapter 4) the drag integrals (2.95/96)
contain additional contributions.
Considering first the body integral (2.95) we now have the situation that, with the effect of the boundary
layer represented, e.g. through "surface transpiration", we have"

9

pq . n - (PeUe6
*
) in 2-d flow) * 0 on SB  (2.102)

Hence, the second part of the body drag integral (2.95) is now different from zero and indeed negative,
illustrating the fact that viscous drag cannot be modelled in potential flow. Note, however, that it can
be related to the friction drag by.applying the momentum theorem (for viscous flow) to the boundary layer.
The friction drag itself can, of course, be determined by integrating the friction forces from the boundary
layer calculations. The pressure part of the body integral now also contains the "viscous" pressure drag,
as well as the vortex drag and wave drag (Fig. 2.8).

Turning to the control surface !rtegral (2.96) we have the situation that, with boundary layers,
the second integral is now different from zero,, because, due to the displacement thickness of the wake,
I nl ]wake * 0. The third integral of (2.96) also contains an additional contribution because, for non-
zero displacement thickness at infinity downstream, (2.101) holds.
Because the viscous pressure drag (pressure part of the drag due to boundary layers) cannot be related
simply to one of the integrals of (2.96) it is seldom evaluated explicitly. Nevertheless it is often
instructive in drag analysis to distinguish this part of drag from the other components. This can be done
by determining the total viscous drag through boundary layer and (viscous) wake momentum deficit considera-
tidns (Squire and Young and related methods) and subtracting the friction drag. Note that the determination
along these lines of the viscous pressure drag is a prerequisite if the wave drag is to be determined
without integration of the jump in momentum (or entropy) along the shock surfaces. The wave drag can then
be obtained by subtracting both the vortex drag and the viscous pressure drag from the total pressure drag.

For completeness a chart of the various drag components is given in figure 2.8. Because of the -
uncertainties and inaccuracies involved with determining the various drag components it is advisable to use
as many different ways as possible. Cross-checking of results obtained along different lines provides a
means for obtaining an impression of the accuracy.

The general experience in computational drag determination seems to be that the pressure drag

integration is seldom performed with sufficient accuracy. This is particularly true for swept wings, where
the net pressure drag is the result of a large pressure drag at the root and a thrust at the tip
For the reasons just mentioned computational determination of the absolute drag level is beyond the present
state-of-the-art in computational fluid dynamics. However, the determination of drag increments due to
(small?) changes in flow conditions and/or configuration would seem to be possible with sufficient accuracy.



14

2.4 References

1. Liepmann,H.W., and Roshko, A., Elements of gas dynamics, John Wiley & Sons, Inc., N.Y., 1966.
2. Kordulla, Wilhelm, Calculation of 3-D transonic flows-survey of recent developments including

viscous flows, VKI Lecture series 1980-6, March 1980.
3. Ashley, H., and Landahl,M.T., Aerodynamics of wings and bodies, Addison-Wesley Publishing Company,

Inc., Reading, Mass., 1965.
4. Mangler, KW., and Smith, J.H.B., Behaviour of the vortex sheet at the trailing edge of a lifting

wing, RAE TR 69049, 1969.
5. Van der Vooren, J., and Slooff, J.W., On isentropic flow models used for finite difference calcula-

tions of two-dimensional transonic flows with embedded shocks around airfoils, NLR MP 73024 U, 1973.
6. Lax, P., Weak solutions of non-linear hyperbolic equations and their numerical calculation,

Comm. P. and Appl. Math., Vol. VII, 1954.
7. Lax, P., and Wendroff, B., Systems of conservation laws, Comm. P. and Appl. Math. Vol. XIII, 1960,

pp. 217-237.
8. Magnus, R., Gallaher, W., and Yoshihara, H., Inviscid supercritical airfoil theory, AGARD CP No.55,

1968.
9. Rizzi, A., editor, GAMM-Workshop on numerical methods for the computation of inviscid transonic flow

with shock waves, Stockholm, Sept. 1979. Proceedings to appear in series Notes on numerical fluid
dynaics, Vieweg Verlag, Braunschweig.

10. Steger, Joseph L., and Baldwin, Barrett S., Shock waves and drag in the numerical calculation of
isentropic transonic flow, NASA TN D-6997, 1972.

11. Viviand, Henri, Formes conservatives des equations de la dynamique des gaz, La Recherche
A6rospatiale, 1974-1, p. 65-68.

12. Avis, Rutherford, Vectors, tensors, and the basic equations of fluid mechanics, Prentice-Hall, Inc.,
N.J. 1962.

13. Chattot, J.J., Coulombeix, C., and da Silva Tomi, C., Calculs d'ecoulements transsonique autours
d'ailes, La Rech. Aerosp., 1978-4, p. 143-159.

14. Chattot, J.J., and Coulombeix, C., Relaxation method for the full potential equation, ONERA T.P.
No.1979-154.

15. Caughey, D.A., and Jameson, A., Numerical calculation of transonic potential flow about wing-body
combinations, AIAA Paper 77-677, 1977, AIAA J., Vol. 17, No.2, 1979, pp. 175-181.

16. Mangler, K.W., and Murray, J.C., Systems of coordinates suitable for the numerical calculation of
three-dimensional flow fields, RAE TB 73074, 1973.

17. Forsey, C.R., and Carr, M.P., The calculation of transonic flow over three-dimensional swept wings
using the exact potential equation. Paper presented at DGLR/GARTEUR 6 Symposium on "Transonic
configurations", Bad Harzburg, West Germany, 1978. ARA Memo No.207.

18. Jameson, A., and Caughey, D.A., Numerical calculation of the flow past a swept wing, N.Y. Univ.
ERDA Report C00-3077-140, 1977.

19. Steger, J.L., and Lomax, H., Transonic flow about two-dimensional airfoils by relaxation procedures,
AIAA Paper 71-569, 1971.

20. Garabedian, P.R., and Korn, D.G., Analysis of transonic airfoils, Comm. P. & Appl. Math., Vol. 24,
pp. 841-851, 1971.

21. Jameson, Antony, Transonic flow calculations for airfoils and bodies of revolution, Grumman
Aerodynamics Report 391-71-1, 1971.

22. Jameson, Antony, Iterative solution of transonic flows over airfoils and wings, including flows at
Mach 1, Comm. P. & Appl. Math., Vol. 27 (1974), pp. 283-309.

23. Jameson, Antony, Transonic flow calculations, VKI Lecture series No..87, 1976.
24. Van der Vooren, J., Slooff, J.W., Huizing, G.H., and van Essen, A., Remarks on the suitability of

various transonic small perturbation equations to describe three-dimensional transonic flow-examples
of computations using a fully conservative rotated difference scheme, In: Symposium transonicum II
(1975), Springer-Verlag, 1976. -t

25. Spreiter, John R., On the application of transonic similarity rules to wings of finite span,
NACA Report 1153, 1953.

26. Murman, E.M., and Cole, J.D., Calculation of plane steady transonic flows, AIAA Paper 70-188,
AIAA Journal, Vol. 9, No.1, 1971, pp. 114-121.

27. Murman, E.M., and Krupp, J.A., Solution of the transonic potential equation using a mixed finite
difference system, 2nd Int. Symp. Num. Math. Fl. Dyn., Sept. 70, Berkeley. In: Lecture Notes in
Physics, Vol. 8, Springer-Verlag, 1971, pp. 199-206.

28. Krupp, J.A., and Murman, E.M., The numerical calculation of steady transonic flows past thin
lifting airfoils and slender bodies, AIAA Paper 71-566, 1971, AIAA J. 10,7, pp. 880-886, 1972.

29. Bailey, F.R., Numerical calculation of transonic flow about slender bodies of revolution, NASA
TN D-6582, 1971.

30. Bailey, F.R., and Steger, J.L., Relaxation techniques for three-dimensional transonic flow about
wings, AIAA Paper 72-189, 1972.

31. Ballhaus, W.F., and Bailey, P.R., Numerical calculations of transonic flow about swept wings,
AIAA Paper 72-677, 1972.

32. Newman, P.A., and Klunker, P.B., Computation of transonic flow about finite lifting wings,4 AIAA Journal, Vol. 10, No.7, 1972, pp. 971-973.
33. Schmidt, W., A self-consistent formulation of the transonic small disturbance theory. In:

Recent developments in theoretical and experimental fluid mechanics, Springer Verlag, 1979.
34. Lomax, H., Bailey, F.R., and Ballhaus, W.F., On the numerical simulation of three-dimensional

transonic flow with application to the C-141 wing, NASA TN D-6933, 1973.
35. Albone, C.M., Hall, M.G., Joyce, G., Numerical solution of flows past wing-body combinations. In:

Symposium transonicum II (G8ttingen, 1975), Springer-Verlag, 1976.
36. Ballhaus, W.F., Bailey, F.R., and Frick, J., Improved computational treatment of transonic flow

about swept wings. In: Advances in engineering science, Vol. 4, NASA CP-2001, 1976.
37. Ward, G.N., Linearized theory of steady high-speed flow, Cambridge University Press, 1955.
38. Hall, N.G., and Firmin, M.C.P., Recent developments in methods for calculating transonic flows over

wings, ICAS Paper 74-18, 1974.
39. Klunker, E.B., and Newman, P.A., Computation of transonic flow about lifting wing-cylinder

combinations, J. Aircraft, Vol. II, 1974, 'pp. 254-256.

Or-



4o. Boppe, Charles W., Calculations of transonic wing flows by grid embedding, AIAA Paper 77-207, 1977.
41. Schmidt, W., and Vanino, R., The analysis of arbitrary wing-body combinations in transonic flow

using a relaxation method. In: Symposium transonicum II (C5ttingen 1975), Springer-Verlag 1976.
42. Schmidt, W., and Hedman, S., Recent explorations in relaxation methods for three-dimensional

transonic potential flow, ICAS Paper 76-22, 1976.
43. Krupp, J.A., The numerical calculation of plane steady transonic flows past lifting aerofoils,

Boeing Sc. Res. Lab. Report D 180-12958-1, 1971.
44. Bailey, F.R., and Ballhaus, W.F., Comparison of computed and experimental pressures for transonic

flows about isolated wings and wing-fuselage configuration, NASA SP-347, 1975.
45. Lock, R.C., Research in the UK on finite difference methods for computing steady transonic flows.

In: Symposium transonicum II (GCttingen 1975), Springer-Verlag, 1976.
46. Van der Vooren, J., Huizing, G.H., and Van Essen, A., A finite difference method for the calculation

of transonic flow about a wing based on small-perturbation theory, NLR TR 81031 U, 1981.
47. Brune, Guenter W., and Rubbert, Paul E., Boundary-value problem of configurations with compressible

free vortex flow, AIAA Journal, Vol. 15, No.10, pp. 1521-1523, October 1977.
48. Klunker, E.B., Contribution to methods for calculating the flow about thin lifting wings at

transonic speeds-analytical expression for the far field, NASA TN D-6530, 1971.
49. Chen, A.W., Dickson, L.J., and Rubbert, P.E., A far-field matching method for transonic computations,

AIAA Paper 77-208, 1977.
50. Berry, C.J., Rogers, E.W.E., and Townsend, J.E.G., A study of the effects of leading-edge modifica-

tions on the flow over a 550 swept back wing at transonic speeds, ARC 21.987, 1960.
51. Haines, A.B., Recent research into some aerodynamic design problems of subsonic transport aircraft,

ICAS Paper 68-10, 1968.
52. Yoshihara, H., Fixes to the 3D transonic small disturbance theory, Convair Rept. CASED-ERR-75-012,

1976.
53. Albone, C.M., Further improvements in the solution of the small-perturbation equation for flow past

a lifting aerofoil, RAE TR 75101, 1975.
54. Yoshihara, H., Interplay of empiricism with computations, Notebook AIAA Applied computational

aerodynamics study seminar, Albuquerque, 1977.
55. Jameson, Antony, Transonic potential flow calculations using conservation form, Proceedings 2nd AIAA

Conference on Computational fluid dynamics, Hartford, 1975, pp. 148-161.
56. Jameson, Antony, Transonic relaxation methods, Notebook AIAA Applied computational aerodynamics

study seminar, Albuquerque, 1977.
57. Piers, W.J., and Slooff, J.W., Calculation of transonic flow by means of a shock-capturing field

panel method, Proc. 4th AIAA Conf. on Computational fluid dynamics, Williamsburg, 1979, paper 79-1459.
58. eiers, W.J., NLR unpublished, 1978.
59. Hafez, M., South, J., and Murman, E.M., Artificial compressibility methods for numerical solutions

of transonic full potential equation, AIAA Journal, Vol. 17, No.8, 19T9, pp. 838-844.
60. Jameson, Antony, Numerical computation of transonic flows with shock waves. In: Symposium

transonicum II, (G6ttingen, 1975), Springer-Verlag, 1976.
61. Murman, Earll M., Analysis of embedded shock waves calculated by relaxation methods. In: Proceedings

AIAA Conf. on Computational fluid dynamics, Palm Springs, 1973, pp. 27-40.
62. Bauer, F., Garabedian, P.R., Korn, D.G., and Jameson, A., Supercritical wing sections II, Springer

Verlag, N.Y., 1975.
63. Caughey, D.A., and Jameson, A., Recent progress in finite volume calculations for wing-fuselage

combinations, AIAA Paper 79-1513, 1979.
64. Ballhaus, W.F., Some recent progress in transonic flow computations, VKI Lecture series 87, 1976.
65. Collyer, M.R., and Lock, R.C., Improvements to the Viscous Garabedian and Korn (VGK) method for

calculating transonic flow past an aerofoil, TAE TR 78039, 1978.
66. Yoshihara, H., A survey of computational methods for 2D and 3D transonic flows with shocks,

VXI Lecture series 55-6, 1973.
67. Murman, E.M., and Cole, J.D., Inviscid drag at transonic speeds, AIAA Paper 74-540, 1974.
68. Bauer, F., Garabedian, P.R., and Korn, D.G., Supercritical wing sections III, Springer Verlag, N.Y.,

1977.
69. Lighthill, M.J., On displacement thickness, J. Fl. Mech. 4, p. 383, 1958.
70. Kchemann, D., The aerodynamic design of aircraft, Pergamon Press, 1978.

[to FULL POTENTIAL

.6. RANKINE-TSP(qsU.2/S4 (EU1

/ HUGONIOT (EULER)

/ ./,

1.0 1.1 1.2 1.3 1.4 Mnl1 'S.I

Fig. 2.1 Shock jump relations in terms of normal
Hacb number I



16

0.8

0,.

~. \\ 0~ -FULL POTENTIAL (0'.0,

--0-- GLIDERLEY -VON KAIIsP EITER
2
S

-0- BAILEY-BALLHAUS
6

."

0 \ \ ,-s -

A- R- -.RE 5,3 (KRUPP'3) I

" - -NLR
24

0.4 "__, __-_- __PPE40 1KLUNKER'MEWAAN39 ) 1

0.2 \

0

-0.2

02 0.7 0.8. 0.9 1.0 1.1 1.2 M. 1,
3

0. 

. ( - FULL POTENTIAL (V -0O
.0-" GU ERLEY -YON KA 'SPREITER5

0. --- 5
B A

ILEY - SALLHAU$
36

-- 0- N L R 
2

7. \\\
0.4 K . \ - BOPPE

''0

0.2 0.

-0. 6 0.7 0.8 09 10 .1 1.2 M. 13

O - FULL POTENTIAL (4901
J -"O-" GUDERLEY - VON K" W I!VWQItTER-'s

t ~0.- 0- .. BLAILEY -BALLHAU$S
3 6 I

- -1NLR24

IF. .049 .0 1 12 .

Fig. 2.2 Critical chordwise perturbation velocity on
(infinite) swept wing as a function of Hach
number for various TSP forms.k

FOWRD(WICAL") 9=OK

REAR SHOCK ,

Fig. 2.3 Typical shock pattern on transonic wing



17

I-o-L POTENIAL......
IRA

S LR
24

70 /

VRWA o RAR O CK 0 5 o 6 0 7 o!0.8 U,

A
/

0/.

/

0

0 ,1 * 1 /

" d o2 o .5 0.6 o.7 0.8 a 9 l

70/ '

/7'
61 . 05 0 0) 0 9 0

n , e

*,~- r~7I



18

S NOINAAL SHOCK

2

----OB---IJ- sa-s --------

/

Fig. 2.5 Asymptotic shock layer solutions for
tMurman/Jameson type of ar tificial viscosity

1.0 ..........F " . T IEM E 5 O F A T I

1.[ FUI.Y COERVATIVERANKNE. OTSOLUTIONS OF

.8 RMKINE T040 5I s
- .. L C S SHOCK

.6 *RM40 OF POSSIBLE1~

N=C#VATME

4SB SWAKE 2

0€ I a

1.1 1.2 1.3 1.4 1.5

Fig. 2.6 Shock jump conditions for one-dimensional Fig. 2.7 Control surfaces for drag
full potential flov according to conservative determination
and non-conservative schemes

INDUCED • WAVE , "INVISCID" (PRESSURE) _

DRAA

DRAG AG DRAG

"VISCOUS" PRESSURE + F (TOTAL) VISCOUSDRAG R DRAGT ,,
=TOTAL) PRESSURE • 0 TOTAL

DRAG N DRAG ' ,

Fig. 2.8. Sumiar of drag components

.. ... 'I-. '



* r.

19

3. EXISTING COMPUTATIONAL TRANSONIC AERODYNAMIC (CTA) METHODS

In this chapter a review of existing CTA computer codes is presented. The main emphasis is on
codes which have been used extensively by many users for a wide range of applications. Therefore, coles
which have been introduced recently are not discussed. Applications involving the TSP and full potential
formulations (both conservative and nonconservative form) are presented. Two- and three-dimensional appli-
cations are discussed, although the emphasis will be on three dimensions. General aspects associated with
transonic relaxation algorithms, including both spatial differencing and iteration scheme characteristics
will be briefly outlined first. Because the vast majority of established application codes use successive-
line overrelaxation (SLOB), this will be the only iteration scheme reviewed in this chapter. For more
advanced solution schemes, that should see widespread use in applications in the next 3-5 years, see
chapter 6 (Advanced Concepts). Additional review papers emphasizing existing computational aerodynamic
methods are Hall [i], Gessow and Morris [2], da Costa [3], and Slooff [4]. For a general review of ccmputa-
tional fluid dynamics see Chapman [5,6].

3.1 The typical transonic solution procedure

The spatial differencing schemes in existing CTA application codes typically use an idea
introduced by Murman and Cole [7] for the TSP potential equation and later advanced by Steger and Lomax
[8], Garabedian and Korn [9], Bailey and Steger [10], and Ballhaus and Bailey [11] for a variety of addi-
tional formulations in both two and three dimensions. The basic idea is as follows: First, determine the
local flow type at each grid point, either elliptic (M < i) or hyperbolic (M > i), by central differencing
the velocity potential. Then, at subsonic points use a standard central-difference approximation (second-
order accurate). At supersonic points use an upwind-biased difference approximation (usually first-order

accurate). The second-order accuracy in subsonic regions and first-order accuracy in supersonic regions
are typical characteristics of most transonic difference schemes based on potential formulations. This
yields an overall differencing scheme in which the computational domain of dependence simulates the
physical domain of dependence. The supersonic upwind differencing scheme is usually constructed to model
the original second-order-accurate central difference approximation plus an upwind-differenced artificial
viscosity term. As iiscussed in sections 2,1.1 and 2.2.2 this artificial viscosity term is the mechanism
that excludes physically incorrect expansion shocks.

For the general nonorthogonal curvilinear coordinate systems involved in airfoil and wing
computations, the upwind direction may not be aligned with a particular coordinate direction or may change
from one coordinate direction to another. For this situation simple schemes that upwind along only a
single coordinate direction are often inadequate, especially for cases with large regions of supersonic
flow. Jameson [12] first resolved this problem by introducing the concept of "rotated differencing" to
solve the nonconservative full potential equation for transonic flows about swept wing geometries. This
concept utilizes the ideas just discussed, namely, second-order-accurate central differening for subsonic
flow and first-order-accurate upwind differencing for supersonic flow. However, to remove the directional
difficulties associated with simple supersonic differencing schemes, a coordinate invariant difference
scheme was introduced. The full potential equation was transformed into a local stream and stream-normal
coordinate system. At elliptic grid points (M < i), standard central difference formulas were used for all
derivatives. At hyperbolic grid points (M 1 1), central difference formulas were used for all contributions
to the normal coordinate derivatives and upwind difference formulas were used for all contributions to the
stream coordinate derivatives. Thus, regardless of the velocity vector orientation, an upwind influence is
guaranteed in supersonic regions. Use of the rotated differencing scheme greatly enhances algorithm relia-
bility. However, several disadvantages are introduced: The rotated difference scheme, because of increased
complication, is somewhat slower in convergence. The increased size of the computational module can
increase shock smearing. In addition, this differencing scheme, when implemented as in reference 12, must
be swept in the flow direction, a minor but often annoying problem for some applications using general
curvilinear meshes.

The standard relaxation scheme used in most of the widely accepted application codes is SLOB.

This iteration scheme, coupled with an appropriate spatial differencing scheme, has proved to be generally
reliable in a wide variety of applications for both two- and three-dimensional transonic flows. The SLOE
iteration scheme is so named because it is implicit along one coordinate direction or line (usually the
direction normal to the flow direction), and explicit in the other directions. A standard SLOB scheme
applied to Laplace's equation in two dimensions

*xx + 0yy = 0 (3.1)

is given by 4/
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where the i,j subscriptsdenote position in the finite-difference mesh and the n superscript denotes the
iteration number. The n+1 superscript is an intermediate iteration level used to obtain the n 1 level by

n+ = -+ (1-w)$ (3.3)

where w is a "relaxation factor". To obtain all the n+1 values for each i = constant line requires a
tridiagonal matrix inversion. Because the points along the i-I = constant line were previously computed
the superscript on oi- ,j is n+1. For stability, w must be between zero and two. Optimum convergence rated

are achieved for values'of a near two in subsonic regions and near one in supersonic regions. Theoretically,
a = 2 is optimum for subsonic regions of flow only as the mesh spacing approaches zero. Values of a near
1.6 to 1.8 are generally used in existing application codes for subsonic regions of flow.

Successful transonic relaxation procedures generally have one additional important feature:
temporal damping in the supersonic region. As shown in reference 12, explicit addition of the quantity

(At u v (3.4)
Ax q q yt

in supersonic regions provides a stab;lizing influence to the relaxation process. The quantities, q, u and



20

v are the speed of the fluid, and the velocity components in the x and y directions, respectively. The
time-like derivative is obtained by considering the iteration scheme to be an iteration in pseudo-time,
for example,

t (,n+1 n+1 n 35
x ii,j 1 i-, "i-i,

The parameter E in expression (3.4) is a user-specified constant chosen by experience to be large enough
to maintain stability but not so large as to excessively slow convergence.

A serious problem associated with the SLOB iteration scheme and often cited by active users,
is slow convergence, particularly during the final stages of convergence. Because of the elliptic nature
of transonic flows, each grid point must be influenced by every other grid point during convergence. With
a line relaxation scheme, disturbances travel rapidly along the implicit direction but very slowly in
other directions. Convergence of three dimensional solutions may take several hundred iterations and many
minutes or hours of cpu time on even the fastest computers. This level of expense places, in some cases,
severe restrictions on the amount such computer codes can be used. The solution to this problem is twofold:
Faster,more cost effective computers and faster more efficient iteration algorithms. Various aspects of
these two subjects are discussed in Chapter 6.

3.2 Existing CTA methods (two dimensions)

Many computer codes designed to solve the two-dimensional flow about airfoils or axisymmetric
geometries have been developed and are currently in wide use. Some of these codes are tabulated along with
important characteristics in tables 3.1 and 3.2. Table 3.1 presents a review of widely-used, two-dimensional
transonic codes applied to airfoils and cascade geometries. Table 3.2 presents a review of widely-used,
axisymmetric transonic codes applied to inlets and bodies. Specific references are included to allow the
interested reader to easily explore more detailed aspects of each code. The transonic small perturbation
(TSP) formulation and the full potential (FP) formulation in both conservative (C) and nonconservative (NC)
form are all represented. Detailed discussion on the derivation of these formulations including limitations
is presented in Chapter 2. These codes have been and still are used in a host of different applications
including cases with viscous corrections, for supersonic free streams, with wind tunnel walls and in a
variety of design or inverse modes. (For more information about design applications in transonic flow see
Chapter 5.)

An indication of the type of grid generation scheme used for each code is also provided in
each table. Conformal or sheared-conformal mapping procedures are most often used, followed by stretched
Cartesian and numerical mapping procedures. The grid topologies are categorized (if appropriate) into one
of three standard classes: 0 mesh, C mesh or H mesh. A sketch showing the basic features of each of these
topologies for a typical airfoil geometry is shown in figure 3.1 (For more information about grid genera-
tion schemes see Sect. 6.2.)

The most common iteration scheme used by the codes presented in tables 3.1 and 3.2 is SLOB.
However, some of the more advanced approximate factorization (AF), multigrid (MG), and extrapolation (EXT)
schemes are also represented. (See Chapter 6 for a discussion of these more advanced algorithms.) This is
to be expected, since new algorithms are often developed within two-dimensional "test-bed" codes before
implementation in the more difficult three-dimensional mode.

Mesh sizes used in typical applications range from code-to-code and from case-to-case. A
typical mesh consists of several thousand points with a hundred or more points to define the aerodynamic
surface of interest. Computer times required by these codes to reach nominal levels of convergence
(relative to the CDC 7600 computer), range from several minutes to several seconds and hence are not
expensive to run.

A series of two-dimensional calculations taken from reference 37 is shown in figures 3.2 and
3.3. The nonconservative full potential code of reference 13 which includes a simple boundary layer
correction, was used for these calculations (a version modified by Douglas Aircraft). The results shown in
figure 3.2 are for a series of three different free stream Mach numbers (M = 0.499, 0.690 and 0.732).
Pesults at the largest Mach number are presented in figure 3.3 for three different lift coefficients
(CL = 0.898, o.645 and 0.499). Inviscid results at the largest Mach number are also presented in figure 3.2
for calculations in which the experimental values of the angle of attack and the lift have been matched.
All other results include the boundary layer correction and have the level of lift set to the experimental
value. The airfoil used is a typical supercritical section as indicated by the large aft loading. Note the
large discrepancies between the inviscid computations and the experimental results. The calculated results
with viscous effects modeled are in good agreement with experiment for every case.4

The matched experimental lift requirement is caused by deficiencies in mathematical modeling
as well as experimental and numerical errors. The experimental pressure distribution and therefore the
resulting lift can be easily measured but the angle of attack cannot. This is primarily due to wind tunnel
wall interference, model distortion, and flow angularity effects. The numerical simulation has none of
these difficulties but does have several numerical sources of error arising from mesh effects and formula-
tiot. approximations. The largest error usually is assoziated with the simulation of viscous effects,
primarily those associated with flow separation, trailing-edge and (near)-wake flow. Therefore, to obtain
good numtrical/experimental pressure distribution correlation, the best procedure is to match the experi-
mental lift in the numerical calculation. This, however, is not always sufficient for good drag correla-
tion (Chapter 4).

The primary way in which two-dimensional transonic codes are used in the aircraft industry is
to determine initial estimates for new wins designs. By using simple sweep theory and two-dimensional
analysis or design codes, a suitable starting geometry for a 3-D wing design can be constructed span
statioa by span station. However, transonic wing/fuselage flow fields tend to be rather three dimensional
in nature (especially when the wing aspect ratio is not large and the free stream Mach number is near one)
and are very sensitive to relatively small changes in the geometry (especially the more efficient super-
critical wing designs). Therefore, the final numerical design modifications are best made with codes that
consider all three dimensions. Existing three-dimensional CTA procedures are discussed next.
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3.3 Existing CTA methods (three dimensions)

3.3.1 Introduction

Several computer codes designed to solve the three-dimensional transonic flow over wing and
wing/body configurations have been developed and are currently in wide use in the aircraft industry. A few
of these codes are listed in tables 3.3 and 3.4 along with specific references describing the details of
each code. Table 3.3 lists codes which use some form of TSP formulation. Different variants of the TSP
formulation are discussed in reference 60. Table 3.4 lists codes which use the full potential formulation.
Note that both the con.servative and nonconservative versions are represented. Fundamentals of these formu-
lations are given in Chapter 2, for example, see Section 2.1.2 for a discussion of the full potential
equation and Section 2.1.3 for a discussion of the various TSP equations.

The iteration scheme used by the codes listed in tables 3.3 and 3.4 is almost exclusively SLOP.
The newer approximate factorization or multigrid schemes are not yet generally used in production codes.
This produces very slow convergence making these codes expensive to run. One feature generally employed
with SLOE iteration schemes is the use of grid refinement. Converged results from a coarse mesh are inter-
polated onto a medium mesh, then reconverged, and finally interpolated to a final fine mesh. Thus a good
initial solution is provided for the fine mesh calculation. The grid sequence philosophy generally provides
a factor of two or three increase in convergence speed (for loose levels of convergence). Most of the codes
listed in tables 3.3 and 3.L use this technique.

The amount of computer time required to run a complete transonic wing solution depends on
several factors: (I) the level of convergence desired, (2) the number of grid points used, (3) the type of
formulation chosen, and (4) the distribution of grid points (i.e., grid smoothness). The amount of computer
time reported by two different users from the same computer code can be substantially different simply due
to the first two factors. Computer time comparisons which address most of these aspects are given in table
3.5 (taken from Ref. 61). Note that all codes compared have about the same number of wing surface grid
points, although the total number of field points is quite different. The Bailey-Ballhaus code uses a
concept called grid embedding (first introduced by Boppe (46] to more adequately cluster grid points at
the wing surface. This concept uses a coarse mesh to cover the entire flow field from the far field
boundary to the wing surface and only a localized fine mesh to resolve detail near the wing surface. This
concept is very attractive because the mesh topology is much more efficient, thus reducing the number of
grid points, the computer time per iteration, and the number of iterations required for a typical solution.
When the interface between the coarse outer and fine embedded grids is placed sufficiently far from the
aerodynamic surfaces, no deterioriation in the solution (to plottable accuracy) can be detected at these
surfaces. The reason grid embedding has not been used with the full potential formulation is due to the
resulting mapping complications. In addition, full potential meshes are generally more efficient than TSP
meshes (that is, TSP meshes without grid embedding), and therefore, grid embedding would not be as useful
in this type of formulation.

All three results shown in table 3.5 were obtained for the same transonic wing at identical
test conditions. All three codes used a coarse-medium-fine mesh sequence. Convergence was monitored by
examining the pressure distribution histories at two span locations, The Bailey-Ballhaus code converged in
approximately 200 iterations, the FL022 code in 50-100 iterations and the FL027 code in about 200 itera-
tions. For these conditions the FL027 code solution time is approximately twice that of the FL022 code and
about five times that of the Bailey-Ballhaus code. (The convergence characteristics x re essentially the
same for both the conservative and nonconservative options available in the Bailey- i: i us codt, II:r
more information about this set of comparisons see reference 61. A more detailed -VT. son of "a:'s"
transonic computer codes including both accuracy and convergence speed comparison, can be foui in Van der
Kolk and Slooff [62].

3.3.2 Specific code characteristics

The fine inner grid used in the Bailey-Ballhaus, Boppe, RAE, and NLR 3D TSP computer codes is
sheared Cartesian, whereby the planform is mapped to a rectangle (see Fig. 3.4). Thus, each spanwise
station has the same number of grid points along the chord. The wing leading edge is positioned to lie
between two grid lines. Thus the infinite slope problem at the leading edge of a blunt-nosed wing does not
cause any difficulties in applying the boundary condition. However, the invalidity of the small disturbance
assumption near the leading edge stagnation line, gonerally results in a poor representation of the flow
field in this region.

The Dornier TSP code, in its original form, uses an unsheared Cartesian mesh. The mesh is
adjusted to have a uniform spanwise placement of the wing leading edge between chordwise mesh points. This
simplifies the TSP equation because the cross-derivative terms introduced by the shearing transformation
are eliminated. However, this strictly Cartesian coordinate system can lead to inefficient treatment of
highly swept, tapered wing geometries. As with other TSP codes, the Dornier TSP code solution accuracy
suffers near the leading edge due to invalidity of the small disturbance assumption in this region.

All the three-dimensional TSP codes mentioned above have been used extensively in the past
4. several years in many types of applications, both commercial and military. For example, the RAE 3D TSP

code can be used to model many specific features including (63]: (I) wing/fuselage junction fillets,
(2) boundary layer effects, (3) static aeroelastic distortion, (4) up to three interfering bodies of
nacelle or store type, and (5) an improved method of treating supersonic to supersonic shock waves. The
fuselage and store geometries are implemented by applying appropriate boundary conditions on rectangular
"boxes" of infinite streamwise extent. Finite length effects can be simulated with a special treatment
applied near the nose and tail regions of the appropriate interfering body. The position of these inter-
fering bodies is quite arbitrary and, for example, can be above or below the wing or even at the wing tip.
To date, no modeling of nacelle or store pylons has been included in this code.

In the NLR code [641, the effect of (finite) bodies and wing-body fillets is simulated by
prescribing normal velocities, obtained from a panel method, in a vertical plane at the wing root.

i The Jameson-Caughey nonconservative full potential computer code (Fl022) uses a sheared W

parabolic coordinate system defined by (see Ref. 48)

*X + iy1  [xXo(Z) + i(Y*Yo( WA
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where z is the spanwise coordinate, and x, and yo define a singular line of the coordinate system located
just inside the leading edge. The effect oT this transformation is to unwrap the wing to form a shallow
bump (see Fig. 3.5)

Yl = s(x1,yl) (3.7)

Next, a shearing transformation is used

= x , n = y1-s(x 1 ,y) , = z (3.8)

to map the wing surface to a coordinate surface. Finally, the t, n and 4 coordinates are stretched by using
an appropriate stretching formula which stretches the infinite physical domain into a finite computational
domain. A revealing diagram of the overall wing grid system shown in the physical domain is reproduced
from reference 65 in figure 3.6.

An interesting aspect of the FL022 algorithm, created by the grid topology, is the orientation
of the tridiagonal matrix inversions used in the SLOR iteration scheme. This aspect is illustrated in
figure 3.7, which has been taken from reference 48. This diagram shows the computational domain in a span-
wise cross-sectional plane; note the orientation of the streamlines. The purpose of sweeping through the
mesh in the fashion shown is to always avoid sweeping in an upwind direction in the supersonic region. If
this procedure is not followed, unstable operation could result.

The Jameson-Caughey FL027 computer code is capable of treating the flow about isolated swept
wings or wings mounted on -n infinite cylinder. The FL028 and FL030 codes are closely related derivatives
of FL027, but they allow more sophisticated treatment of the fuselage. A comparative study of these FLO
codes is made by Verhoff and O'Neil [66]. In this study wing/fuselage simulation capabilities are discussed
(see Fig. 3.8), and a new technique for extending capabilities, called the equivalent simple body (ESB)
technique, is outlined.

A finite volume spatial difference scheme is used in the FL027, FL028 and FL030 codes to model
the conservative full potential equation. This scheme uses a numerical evaluation of the metric coefficients,
and therefore, theoretically could be used for flow calculations in any type of physical domain for which
the grid point Cartesian coordinates are known. This generality produces a decrease in computational
efficiency relative to FL022. This is due to the numerical evaluation of the transformation metrics which
are recomputed each iteration (or stored permanently on disk and accessed iteratively during the solution
process). The actual transformation used for most FL027 and FL028 wing calculations is very similar to the
transformation described for the FL022 computer code and will not be discussed further. The transformation
used in the FL030 code is somewhat more sophisticated and is described in detail in reference 54.

The ONERA transonic full potential code due to Chattot, Coulombeix, and da Silva Tome [57] is
capable of treating the flow about isolated wing geometries. The mapping used is again very similar to the
previous descriptions and will not be discussed further. This code, like the more recent FLO codes, uses
numerical evaluations of the metric quantities and therefore could support mesh generation routines of
varying type provided they all used the same general topology.

Most full potential codes are designed for either conservative or nonconservative form.
However, the ONERA code includes spatial differencing options for both forms. This allows direct comparison
of the two forms in a format which is unencumbered by different iteration algorithms, grid topologies, or
programming styles. Such a comparison is shown in figure 3.9 for a rectangular planform, nonlifting NACA
0012 wing at a free stream Mach number of 0.85. The conservative result produces a shock that is too strong
and about 10-15 % downstream of the experimental shock position. The nonconservative shock location is
incorrect in just the opposite direction; it is too weak and too far forward. This type of disagreement
between conservative and nonconservative forms (for either the TSP or the full potential equations) is
characteristic. The CTA code user should be aware of which formulat c. is being used and how the resulting
solutions should be interpreted.

The ARA full potential wing/body code, of Forsey and afrr !5fl, is capable of solving the
nonconservative full potential equation about isolated wings and wing/body combinations. Bodies must be
circular in cross-section although the body radius may vary axially. This has the effect of providing a
relatively good wing/body interference simulation but does not produce good finite-length body effects.

The mapping procedure used in the ARA code is implemented in two phases. First, the body is
transformed via conformal mapping into a slit that corresponds to a portion of the symmetry plane. Because
each body cross section is constrained to be circular, this mapping is analytic. Next, the wing leading
and trailing edges are extended to infinity to produce a "flat-plate wing" outboard of the tip. Each flat-
plate wing cross section is mapped to the interior of a circle using an analytic conformal mapping, and
each finite-thickness wing cross section is mapped using a numerical conformal mapping. Thus, the total
effect of this transformation is to map the surface of the wing (including the flat-plate wing extension)
to the inside surface of a circular cylinder and the free stream outer boundary to the circular cylinder
center. Unlike the FLO full potential codes (FL022, FL027, FL028, and FL030), which use a "C" mesh topology
about each wing span station, the ARA code uses an "0" mesh topology. This produces a somewhat more effi-

4,cient mesh for the ARA code, that is, for the same number of total grid points, the ARA code mesh puts
4 about 30 to 40 % more points on the wing surface than a typical FLO code mesh.

3.3.3 Selected results obtained with existing methods

The next item of importance is accuracy, that is, how well do these codes actually predict
transonic wing flow fields? Figure 3.10 shows a pressure coefficient distribution comparison between FL022
(the nonconservative full potential computer code) and experiment taken from reference 67. This frequently
used test case (ONERA M-6 wing at a free stream Mach number of 0.84 and an angle of attack of 3.06 deg)
represents a difficult test for a transonic flow calculation procedure because of the existence of a
double shock. This feature is evident in the first three pressure coefficient distributions. In the final
pressure distribution at 95 % of the semi-span there is only a single shock. Generally speaking, except
for a slight smearing of the shocks, these results are in excellent agreement. For this case no boundary
layer correction was applied which suggests that the nonconservative differencing across the shock modeled
the shock/boundary layer interaction so far as the pressure distribution is concerned. In addition, no
corrections to the angle of attack or the free stream Mach number were required to achieve good agreement.
This situation, as we shall soon see, is a somewhat rare occurrence.

The next two comparisons shown in figures 3.11 and 3.12 were taken from reference 68. Both
results were obtained for the same wing geometry which consisted of NACA 64, 212 normal airfoil sections,
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an aspect ratio of six, a streamwise thickness ratio of 0.098, and a quarter chord sweep angle of 35.18
deg. The results shown in figure 3.11 are for a free stream Mach number of 0.6, that is, a subcritical
case. Both the FL022 and the Boppe TSP results are compared with experiment. As expected the TSP results
suffer in the leading edge region. This is prob&bly due in part to the poor leading edge treatment asso-
ciated with the TSP formulation. In constrast, the results produced by the FL022 code are in excellent
agreement with the experiment. For this subcritical calculation no differences between the nonconservative
and conservative full potential formulations should exist.

The results shown in figure 3.12 are for a free stream Mach number of 0.85, that is, a
transonic case. The TSP formulation was in the nonconservative mode. Both numerical results agree reason-
ably well with the experimental results. Thus, the constraint that practical TSP calculations must be run
for transonic conditions is reinforced.

This behaviour results from an effective cancellation of errors between the leading-edge
singularity error and the small-disturbance boundary condition error that seems to exist only for transonic
calculations. The mesh spacing in the vicinity of the leading edge plays an important role in this error
cancellation. Theoretically, the TSP equation is equally valid (or equally invalid) for subcritical cases,
but the results in this speed regime are generally inferior to the transonic regime results. For more
discussion on this point see Section 3.4.2.

Three additional sets of comparisons are shown in figures 3.13, 3.14, and 3.15. The first two
are from reference 69 and show comparisons for a rather difficult case (F-16 wing-alone configuration at
M_= 0.9, CL = 0.6, and with no viscous effects included). These results are plotted at 58 % of the semi-
span. Figure 3.13 shows results from the FL027 and the Bailey/Ballhaus (conservative form) transonic codes
compared with experiment and a linear panel code result. The linear panel code produces no shock waves and
therefore is inappropriate for this calculation. Both conservative transonic codes produce shocks which
are too strong, as expected, without the inclusion of viscous effects, especially the shock/boundary layer
interaction. The Bailey/Ballhaus result underpredicts the leading edge expansion. Since these calculations
have been made at a constant lift coefficient, the resulting leading edge loss of lift is made up by an
aft shift in the shock position.

Figure 3.14 shows a similar set of comparisons for results which are all nonconservative:
Bailey/Ballhaus (nonconservative form), Boppe, and FL022. For this set of comparisons much better agreement
at the shock is obtained. The leading edge expansion underprediction by the Bailey/Ballhaus code is not as
severe although a significant discrepancy still exists in this region. The discrepancy between the numerical
and experimental values of pressure at the trailing edge is probably due to trailing edge viscous effects
which are not modeled numerically. The correct pressure level between the two shocks is best predicted by
the Bailey/Ballhaus code. All results, both conservative (Fig. 3.13) and nonconservative (Fig. 3.14), seem
to slightly mispredict the forward shock position. This error and the TSP leading edge expansion error, to
an extent, are caused by local leading edge errors introduced by an angle of attack change away from the
experimental value required to produce the proper level of lift. The inclusion of proper viscous correc-
tions should reduce this effect substantially.

Figure 3.15 (taken from Ref. 57) shows a series of results for the ONERA M-6 wing which was
previously discussed in figure 3.10. Three numerical results, Jameson (conservative), Bailey/Ballhaus
(conservative), and ONERA (nonconservative) are compared with experiment at a semi-span station of about
20 %. The free stream Mach number was 0.841, the angle of attack was 3 deg, and no viscous effects were
included. The double shock configuration is predicted by all three results with some variation in the
second shock position. The conservative results predict a somewhat stronger second shock slightly downstream
of the nonconservative shock. In this case a good leading edge expansion is predicted by the TSP code
probably because the leading edge grid was properly selected and the experimental angle of attack, instead
of the experimental lift, was matched.

An experimental/numerical correlation involving an extremely sophisticated configuration for
transonic flow analysis is shown in figure 3.16. In this particular example the Boeing KC-135 aircraft
(including the wing, fuselage, all four pylons and nacelles, and both wing-tip-mounted winglets) is modeled
via the TSP technique of Boppe [47J. In this calculation the winglets were mounted at a 90 deg angle with
respect to the wing surface while in the experiment the winglets were canted outboard 15 deg. Strong shock
waves are not present in this calculation which was for cruise conditions. Agreement between experimental
and numerical results is excellent.

Results from the ARA full potential code (taken from Ref. 70) are presented in figures 3.17 and
3.18. The wing/body configuration used in this calculation is shown in figure 3.17. The body was a circular
cylinder of constant radius, and the mid-mounted wing had the following characteristics: AR = 6, TR = 1,
sweep = 25 deg. The wing had a constant supercritical airfoil section and was used without twist. Viscous
effects were simulated by the addition of a displacement thickness obtained from a two-dimensional
transonic viscous code [713.

Computed results for a free stream Mach number of 0.86 and an angle of attack of 4.2 deg are
compared in figure 3.18 with experimental results for the same Mach number at two different angles of
attack, 4.6 and 3.7 deg. The calculation was performed with the usual grid sequence involving 300, 100, and

4160 iterations on the coarse, medium, and fine meshes, respectively. The finest mesh for this case consisted
4. of 160x20x24 = 76,800 grid points. The computational time required for this calculation was equivalent to

about 25 min of CPU time on the CDC 7600 computer. Results are shown for three span stations, y = 0.37,
0.55, and 0.73, and are generally in excellent agreement with experiment. Note the unusually sharp shock
capture displayed in figures 3.18(b) and (c). This is a result of the efficient mesh topology used in the
ARA full potential code in conjunction with a relatively fine mesh.

Results from the RAE 3D TSP code (taken from Ref. 72) are presented in figures 3.19-3.22. The
wing/fuselage configuration used in the first calculation is shown in figure 3.19. It consists of a low-
mounted wing on a fuselage of circular cross section. The wind tunnel test model was constructed with a
fillet between the wing upper surface and the body starting at the wing crest and extending downstream.
Figure 3.20 shows a pressure coefficient comparison between numerical results (with and without the fillet
model) and experiment. The experimental results are plotted at a wing station of y - 0.31 and the numerical
results are plotted at y = 0.268. Note the improved agreement when the fillet is modeled.

The second RAE 3D TSP configuration is shown in figure 3.21. It consists of a wing/fuselage/
nacelle geometry with several options available for the nacelle stream tube. The nacelle stream tubes
surfaces are treated as solid boundaries in the numerical calculations. The effect of the nacelle stream
tube geometry on the lift distribution is displayed in figure 3.22. This type of simulation is very diffi-
cult to obtain experimentally but is relatively easy to model numerically.

The last result presented in this section is from a computer code developed by Yu (731. This

Ii
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code is b.tsically a modified version of the Jameson-Caughey finite-volume code. The primary improvement
utilized in the Yu code is a new efficient and flexible grid generation method based on the body-fitted
coordinate method of Thompson, et al. [74,75]. In this approach a set of linear elliptic equations are
solved numerically to determine tne three-dimensional grid. The interior grid distributions are controlled
by the boundary grid distributions in a manner developed by Middlecoff and Thomas [76]. For more informa-
tion about this grid generation technique see Section 6.2.2.

Results from the Yu code (taken from Ref. 77) are presented in figures 3.23 and 3.24. The
wing/fuselage configuration is shown in figure 3.23. In this calculation procedure the restriction to
simplified fuselage geometries is not required; reasonably complex geometries can be accurately simulated.
In this case the flow field about the Boeing 747-200 wing/fuselage geometry is computed for a free stream
Mach number of 0.84 and an angle of attack of 2.8 deg. The section pressure coefficient distributions are
compared with experiment at three span stations in figure 3.24. The agreement at each station is excellent.

An interesting trend, which is now taking place in CTA, is the advancement of nonlinear codes
to include more sophisticated geometrical modeling. Only when all geometrical aspects of a configuration
are included in a flow-field simulation can proper answers result. This is particularly important in the
transonic regime because of nonlinear interference effects. Examples of more complete geometrical modeling
are given by: Rizk (78] in which the propeller slipstream/wing interaction was considered, Mercer and
Murman (55] in which wind tunnel walls were simulated, Yu [79] in which nacelle/pylon combinations were
included into wing/fuselage calculations, and Wai and Yoshihara [80] in which wing/fuselage/pylon/nacelle
combinations with powered jet exhausts were simulated. The prospects for reasonably general simulation of
complete aircraft in the transonic regime is quite likely to become a reality in the next few years.

3.3.4 Conservative versus nonconservative formulations

At this point a general observation can be made concerning conservative versus nonconservative
form. Better agreement with experimental results is achieved with a nonconservative inviscid code than
with a conservative inviscid code. This is due to the well-known effective mass source introduced at shocks
when nonconservative differencing is used [81]. This numerically generated "error", fortuitously models
the reduced shock pressure rise caused by the shock/boundary layer interaction, and therefore, in most
cases, produces better agreement with the experimental pressure distribution than a conservative result.

For cases with viscous corrections added the conservative versus nonconservative situation is
more difficult to assess. The addition of viscous corrections is indeed important for conservative CTA
schemes because of the large discrepancies that exist without such corrections. Likewise, it is generally
accepted that adding viscous corrections to nonconservative codes, especially to model shape change and
decambering effects, is important to obtain good accuracy over a wide range of cases. If the viscous effects
are accurately determined, the nonconservative formulations will still produce results with the undesirable
effective mass source at shock waves and therefore introduce errors in the solution. However, under these
circumstances, the conservative formulation should produce the correct physical answer, providing the
isentropic shock approximation is not violated. This last constraint generally holds for cases in which the
maximum local, normal-shock Mach number does not exceed 1.3.

The nonconservative CTA scheme will of course continue as an engineering tool for many applica-
tions, where the proper shock/boundary layer interaction cannot be incorporated. However, the ultimately
correct formulation must be based on the mathematically sound conservative form. Most recent inviscid
algorithm research has been on conservative formulations and will receive the main emphasis in Chapter 6
(Advanced Concepts).

3.4 Problems and limitations with existing techniques

3.4.1 Introduction

The use of CTA techniques for the design and analysis of new aircraft is rapidly becoming
widely accepted. Their use can substantially reduce development time and cost, as for example, in the case
of the Airbus A-310 wing design [82]. New transonic computational methods were used to improve the cruise
characteristics of the A-310 wing relative to the A-300 wing. The resulting improvement in aerodynamic
efficiency could save billions of dollars in fuel costs over the lifetime of a fleet of such aircraft.

However, many problems with the implementation of CTA methods still exist. Some of these
include: (1) errors generated by the improper usage of CTA methods, (2) lack of sophistication in modeling
proper geometrical aspects, (3) errors in the numerical calculation procedure, and (4) errors in the
experimental results, which in turn are used to verify the numerical results. A good summary of some of
these difficulties is given by Hicks [83] in a recent paper which discusses the successes and failures of
CTA codes applied to the transonic wing design problem.

A complete description of user guidelines applicable to CTA computer codes is difficult to
formulate, primarily because of the extremely diverse nature of these codes. Many times certain difficulties
are case dependent which further complicates the formulation of user guidelines. Differences in the

4 governing equation formulation, grid topologies and grid generation techniques, the nature of viscous
corrections, boundary condition application, etc., are just a few areas where significant differences can
exist. Nevertheless, the following section is devoted to the discussion of code characteristics with
special emphasis on problems or limitations. In addition, some of the fixes used to successfully overcome
these prominent difficulties are also presented and discussed.

The first, and perhaps most general comment concerns not a specific computer code but rather
the user. Generally speaking, before an engineer is trusted with the responsibility of conducting a wind
tunnel test for the purpose of designing a new aircraft or aircraft component, many years of experience
are required. Much the same philosophy should be applied to the utilization of CTA methods for the design
or modification of an aircraft. Perhaps not years, but at least months of experience for a single code/user
interface should be obtained before realistic results can be expected.

Geometry input and checkout as well as the related mesh generation process can be a very complex
task. Specification of relaxation factors, acceleration parameters, and damping coefficients required to
optimize convergence or prevent divergence is another difficult task. Being able to properly interprets the
resulting solution is the most difficult task. The CTA code user must constantly be concerned about (1)
level of convergence,(2) coarse mesh effects, (3) viscous effects, and (4) the validity of the potential
formulation to accurately model each case. These questions can be answered systematically and effectively

1'
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with the proper level of experience.
Experience with subsonic panel methods does not fully prepare the user for transonic code

applications. This is primarily due to the increased complexity of transonic flow fields (shocks and
shock/boundary layer interactions), the increased sensitivity of transonic flow to surface coordinate
specification, and the fact that panel grids are only two-dimensional while transonic grids are three-
dimensional. To gain experi-.ce with transonic codes, simple problems should be attemped first. Two-
dimensional airfoil calculations or simple three-dimensional solutions (for example, wings with little or
no sweep, taper or twist at low Mach numbers and angles of attack) are good examples. Then as experience
is obtained, more complex configurations at higher Mach numbers and angles of attack can be tried. With
this philosophy a good understanding of cod2 limitations can be obtained in terms of accuracy, convergence
reliability, and range of application.

The most complex aspect of transonic code operation, which requires the most experience,
involves code modification. Because of the rather limited number of geometry options offered by most CTA
codes, modification for new geometries is often required. This, of course, is best completed by the code
author or someone with extensive experience with the internal algorithm, grid generation, and geometry
specification logic.

In summary, if the proper amount of time is devoted to learning and understanding the various
aspects associated with CTA methods, then these methods can be a valuable asset for the design of modern
transonic aircraft. General problems and suggested fixes associated with various formulations are discussed
next, followed by more specific problems associated with individual codes.

3.4.2 TSP equation leading edge limitation

Several significant limitations exist within the TSP equation formulation (as already mentioned
in Sect. 2.1.3). The first is that significant errors arise in the vicinity of blunt leading edges (near
stagnation points or lines). This error is caused by a breakdown of the small disturbance assumption near
the leading edge stagnation region. Implementation of the small disturbance boundary condition to achieve
flow tangency at the airfoil or wing surface is difficult because the body surface slopes become large in
this region. Poor resolution of the stagnation region is a result of this problem but is not the greatest
point of concern. Poor representation of the leading edge expansion as previously shown in figures 3.13
and 3.14 is a much more serious problem.

This TSP leading edge singularity is basically inherent. No completely-effective, easy-to-
implement solutions for this problem have yet been devised. (For one specific attempt to improve the TSP
leading edge situation see Ref. 84.) The basic symptom of this problem is the existence of solution non-
uniformness in the leading edge region, that is, as the leading edge mesh is refined, different leading
edge solutions will result. As the mesh becomes very fine stability problems may develop. To eliminate or
reduce this instability a common fix is to modify the leading edge slope by using

(~j = ~) / v +() 2
modified atual / ctual

where dy/dx is the slope of the airfoil surface (see Ref. 85 for more discussion on this point). With this
modification the leading edge difficulties are moderated. However, the original geometrical configuration
has been modified which alters the resulting final solution.

Another problem associated with the TSP formulation for highly swept and tapered configurations
occurs when the standard embedded grid approach is used (see Sect. 3.3.1 for a more complete description
of the TSP embedded grid approach). This instability is the so-called "wing tip shock wave instability"
and can be identified by diverging values of the maximum correction at the wing tip. For cases in which the
problem is acute, propagation of this divergence inward toward the root can be observed [86]. This insta-
bility is caused by large differences in mesh resolution at the tip between the fine embedded wing grid and
the coarse global crude grid. It occurs only when strong shock waves exist at the wing tip. A simple code
modification suggested by Boppe [86] to relieve this problem basically consists of reducing the chord-wise
mesh density associated with the fine embedded wing grid so as to make it more compatible with the global
crude grid. This fixup has the effect of reducing solution accuracy and therefore should not be used when
it is not needed. However, if the wing tip shock wave instability does exist, this modification quite
likely will remove it.

3.4.3 Slow convergence

Another problem associated with all three-dimensional transonic formulations is the excessive
amount of computer time required to obtain a single solution. Depending on the formulation, typical CPU
times (CDC 7600 computer) raxige from about 5-20 min for the TSP formulation to about 30-60 min for the
conservative full potential formulation (see Sect. 3.3.1 for more discussion on this point). These times
can be considerably larger for other, slower computers. The most alarming aspect about these run times is

4~ D'that typically, the convergence criteria and grid dimension sizes are selected to minimize computational
cost (that is, CPU time) often without sufficient regard for solution accuracy. Frequently, final results
are obtained after a fixed number of iterations regardless of the solution convergence level. Significant
errors in the shock position and strength and level of lift can result. This error seems to be worse for
high aspect ratio wings where the lift development can be quite slow.

Grid size also plays a very important role in code efficiency and accuracy. Accurate results
require far more grid points than most design/analysis engineers realize. For example, the asymptotic
behaviour of a typical transonic airfoil solution on a sequence of successively refined grids was reported
in reference 87. A grid consisting of 64x16 points underpredicted the lift (relative to the asymptotic
value) by approximately 18 %, and a grid of 128x32 points, which is fine compared to most wing cross
sectional grids, underpredicted the lift by about 10 %. The problem in three dimensions is more severe than
this simple two-dimensional study indicates. Supersonic-to-supersonic shocks, which often appear in swept
wing calculations, are much more difficult to capture without excessive smearing because of their entirely
first-order-accurate nature. This suggests that. most three dimensional codes, with typical mesh dimensions
(for example, 80 to 100 points on the wing surface at each span station), produce results with 10 to 15 %
of error in lift just due to mesh coarseness. To improve this situation, schemes with higher accuracy
should be sought. A promising approach was presented in reference 87 for an entirely second-order-accurate
scheme. Although significant improvements in accuracy were obtained, the convergence efficiency was somewhat
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reduced. More discussion concerning schemes with higher-order accuracy is presented in Section 6.1.1.
The ultimate solution to the problems of accuracy and computational efficiency is two fold.

First, faster, more cost effective computers with enhanced performance from vector architectures will allow
finer and therefore more accurate meshes to be used in a routine and efficient fashion. Second, an improved
generation of transonic relaxation algorithms will help to improve both the computational efficiency of the
iteration process and the accuracy associated with the spatial differencing scheme. Details associated with
both of these aspects are discussed in Chapter 6 (Advanced Concepts).

3.4.4 Viscous corrections

A common problem associated with poor numerical/experimental correlation is the lack of proper
viscous corrections. This is an extremely complex subject involving four major effects: (1) shock/boundary
layer interaction effects, (2) the decambering and thickness effects due to the addition of a simple
displacement thickness, (3) trailing-edge effects, and (4) near-wake effects. Viscous corrections for most
transonic flow conditions are significant and must be modeled to obtain good correlation with experimental
results. More extonsive discussion of this subject with special emphasis on the implementation of correc-
tions for viscous effects is given in Chapter 4.

3.4.5 Problems due to the inadequate treatment of geometry

Some of the discrepancies between numerical and experimental results are due to the inadequate
geometrical treatment associated with the numerical simulation. For instance, trying to model a wing!
fuselage experiment with a wing-alone code can produce large errors. Interesting examples presented in
reference 83 address this problem and are briefly discussed here. The wing/fuselage geometry used in this
set of comparisons is shown in figure 3.25 along with pertinent geometrical characteristics. Figures 3.26
and 3.27 show the numerical/experimental pressure coefficient comparisons obtained at a free stream Mach
number of 0.8. The numerical results of figure 3.26 are from FL022, which is strictly speaking a wing-alone
code. The numerical results of figure 3.27 are from FLO30 which simulates the entire wing/fuselage model.
The FL022 code is nonconservative and in this case was not coupled with a boundary layer code. The FL030
code is conservative and was coupled with a boundary layer code. In both cases the numerical and experimen-
tal angles of attack were matched. The wing/fuselage numerical results (FL030) are in much better agreement
with the experiment near the wing root than the wing-alone numerical results (FL022). The amount of dis-
crepancy between the two codes decreases outboard toward the wing tip. This is, generally speaking, an
expected result because of the more complete geometrical modeling provided by the wing/fuselage code.

However, as pointed out in reference 83 the use of a wing/fuselage code to model a wing/
fuselage experiment does not necessarily guarantee good experimental/numerical correlation. Two examples
in which poor numerical/experimental comparisons were obtained for a wing/fuselage configuration are
discussed in reference 83. The code used in these calculations was FL028. Reasons for disagreement can come
from many sources and are difficult to formulate. Hicks [83] suggests four primary contributors to poor
numerical/experimental correlation: model errors, viscous effects, tunnel effects, and code limitations.
Hicks suggests two procedures to help minimize the numerical error associated with a particular code. The
first is to compute each solution on a sequence of meshes, each new mesh slightly finer than the previous
mesh. Interpolation of the previous coarse mesh solution onto the next finer mesh could be used to reduce
computer time. The final solution is approached asymptotically as the mesh is refined. This allows an
assessment of the solution truncation error. If a large difference exists between two successive solutions,
then this indicates a large amount of truncation error and the need for further mesh refinement.

The second procedure to help minimize error is to iterate on each grid, not a fixed number of
iterations, but until the solution stops changing by a fixed amount. Because these two suggestions could
increase computer time drastically, they may not be practical until faster computers and/or iteration
schemes are routinely used. However, an approach along this line, to reduce errors associated with poor
mesh resolution and lack of solution convergence, must ultimately be adopted before CTA codes obtain the
reliability and level of accuracy required for routine production usage.

As mentioned above, a common cause for poor numerical/experimental correlation is due to
experimental errors. Wind tunnel wall interference is a particularly important cause for discrepancy
especially as free stream Mach numbers approach one. One method to help eliminate this problem is to
include the wind tunnel walls as part of the numerical simulation. Examples are provided in [14,20,88] for
two dimensions and in [54] for three dimensions. Although modeling of the proper ventilated wall boundary
conditions is difficult, significant improvements in estimating the wall effects can be obtained by this
approach.

Wind tunnel results can also be inaccurate because of flow angularities or model distortion.
Frequently these problems, as well as some numerical inaccuracies, are overcome by first "calibrating"s a
particular code to an existing facility for a given model configuration. This is accomplished by applying

I 19corrections" to the angle of attack, free stream Mach number, and/or wing twist distribution until a good4 numerical/experimental correlation is achieved. In addition, inadequate geometry modeling (for example,
4- using a wing code to model a wing/fuselage experiment) can be partially overcome by this procedure.4 Numerical/experimental comparisons using this philosophy are shown in figures 3.28 and 3.29

for a high aspect ratio (AR = 10.3) supercritical wing tested by NASA Langley (taken from Ref. 67). The
wing is swept 27 deg at the quarter chord line, and has streamwise section thickness ratios of 14.9 % at
the fuselage junction, 12 % at the trailing-edge break, and 10.6 % at the tip. Viscous effects were modeled
by a two-dimensional integral boundary-layer method applied in streamwise strips. The calculation angles of
attack were determined by matching the experimental lift coefficients.

Figure 3.26 presents results from F1022 which does not model the fuselage used in the experiment.
In an attempt to account for the fuselage interference effect this calculation was run at a free stream
Mach number of 0.80 while the experiment was run at 0.79. Agreement is excellent everywhere except near
the inboard stations, where details of the fuselage interference are probably important.

Figure 3.29 presents results from FL027. For this case the fuselage is modeled as an infinite
cylinder with a radius equal to the maximum radius of the fuselage on which the wing was mounted in the
experiment. The low-mounted position of the test wing was also simulated in the numerical calculation. For
this case, the seroelastic deformation of the model was estimated by introducing 0.36 dog of wash out
(negative twist) at the tip. This aeroelastic twist was added linearly from the trailing-edge break to the

tip; it was not included in the 11L022 calculation of figure 3.28. The Mach number correction used for the
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FL027 result was 0.007 and was applied to account for the effect of the finite fuselage used in the
experiment. It is clear from figure 3.29 that representation of the effect of a finite fuselage by a
simple Mach number shift is an oversimplification. Results in figure 3.29 are in better agreement with
experiment near the root station than the results of figure 3.28, but in poorer agreement outboard near
the tip. Nevertheless reasonable agreement is obtained in both cases by making these ad hoc adjustments or
calibrations.

A fairly simple, but adequate and therefore convenient way to introduce finite body and wing-
body fillet effects into the FL022 code has been developed by Van der Vooren et al. [89]. Similar as in
[64], normal, i.e. spanwise velocities are prescribed in a vertical plane at the wing root. These velocity
components are obtained from a panel method calculation for the complete wing-body configuration. As
indicated by the example of figure 3.30 a substantial improvement in the capabilities of the FL022 code is
realized in this way.

In design applications the general procedure in using CTA methods is that, after the results
are calibrated, geometry perturbations are sought either by trial-and-error or b using a suitable design
approach to force desirable characteristics into the solution, for example, reduction in shock strength at
constant lift or a reduction in the isentropic pressure gradient also at constant lift to avoid separation.
With this kind of approach the use of numerical methods is most attractive. (For a more detailed discussion
on design methods see Chapter 5.) A large number of geometry perturbations can be examined quickly and
efficiently. Once the optimal configuratioi. is found numerically it can then be verified experimentally.
As a result of this type of approach, much larger design spaces can be explored in the time available to
the designer. This ultimately translates into more efficient aircraft designs obtained more cost effec-
tively.
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TABLE 3.1

Some existing !ransonic potential codes for two-dimensional applications

Code name Date Governing Iteration Grid RemarksI equation sr beme

Garabedian 1971 FF(NC) SLOB Conformal Viscous effects option
13

- Korn
9  

0 mesh

TSFOIL'
4  

1975 TSP(C or NC) SLOB Stretched-Cart. Wind tunnel wall option. m > 1 option.
Detailed documentation

Carlson"
5  

1975 FP(NC) SLOR Stretched-Cart. Design option.
nonaligned Viscous effects option'

6

FL06'
"  

1975 FP(C or NC) SLOB or Conformal Viscous effects option (GRUMFOIL'
8
)

Hybrid 0 mesh

RAE TSP'
9 '
" 1975 TSP(NC) SLOB Stretched-Cart. Wind tunnel wall option

Eberle"' 1977 FP(C) SLOB Finite element Wind tunnel wall and cascade flow versions
0 mesh

TAI R"
2 3  

1978 FP(C) AF Numerical Detailed documentation
0 mesh

Chattot
24  

1979 FP(C) AF Sheared parabolic

C mesh

FL03621 1979 FP(C) MG/AF Conformal
0 mesh

Deconinck 1979 FP(C) SLOB Finite element Cascade and channel flow versions
and Hirsch

26  
cr AF

Baker
2
l 1980 FP(NC) AF Conformal

0 mesh

TABLE 3.2

Some existing transonic potential codes for axisymmetric applications

Code name Date Governing Iteration Grid Remarks
equation scheme

RAXBOD
2
'

29  
1973 FP(NC) SLOB Body-normal/ Blunt or pointed axisymmetric bodies,

sheared- M > I capability
cylindrical

Arlinger
30 ,31  

1975 FP(NC) SLOB and Conformal Axisymmetric inlets and bodies, M > 1

MG/SLOR capability

Baker
32  

1975 FP(NC) SLOB Patched Axisymmetric inlets

Caughey and 1976 FP(NC) SLOB Sheared Axisymmetric inlets
Jameson

33  
+ EXT conformal -

Reyhner
3
4 1976 FP(NC) SLOB Stretched-Cart. Axisymmetric inlets with or without center

+ EXT nonaligned bodies

Eberle
a5  

1978 FP(C) SLOB Finite element Axisymmetric inlets and bodies

Chen and 1979 FP(C or NC) SLOB Sheared Axisymmetric inlets with or without center
Caughey

36  
+ EXT conformal bodies

------------------------------------ my-
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TABLE 3.3

Some existing three-dimensional codes using the TSP formulation

Name Date Type of Iteration Grid Remarks
formulation scheme

Bailey - 1972 C or NC SLOB Stretched-sheared Wing and wing/body geometries viscous
Ballhaus"

1
'
,  

Cartesian effects (GACAMES
39
), embedded grid

option

Dornier
4 .

4'1 1973 NC SLOR Stretched Cartesia Wing and wing/body geometries

RAE TSP
4 12  

197h NC SLOR Stretched-sheared Wing, wing/body and wing/body/multiple
Cartesian store geometries including nacelles,

Viscous effects option
3

NLR TSP
6 °
'
64  

1975 C or NC SLOR Stretched-sheared Wing, body effects simulated
Cartesian

Rae 
4
' 1976 NC SLOB Stretched-sheared 3-D Cascade geometries

Cartesian

Boppe
46

'
47  

1977 NC SLOR Stretched-sheared Wing, wing/body, wing/body/multiple
Cartesian store geometries including nacelles and

winglets, embedded grid option

TABLE 3.4

Some existing three-dimensional codes usinR the full potential formulation

Code name Date Type of Ituration Grid Remarks
formulation scheme

FL02212' 197h NC SLOR Sheared conformal Isolated wing geometries
C mesh Viscous option available

4 9

Beyhner
50
'
51  

1976 NC SLOR or Sheared Cartesian Axisymmetric inlets at angles of attack
MG/SLO0R (nonaligned) with and without center bodies "

FL027, FL028 1977 C SLOR Sheared conformal Wing and wing/body combination
FLO3052,53,54 C mesh Wind tunnel wall version

55

Dassault
5
" 1977 optimal Finite-element Wing, wing/body and wing/body/nacelle

control combinations

conjugatesadigrad.ii

ONERA
5  

1978 C or NC FSIPIR or Sheared conformal Isolated wings

ARA
5
6 1978 NC SLOR Sheared conformal Wings and wing/body combinations (bodies

0 mesh must have circular cross-section)

Eberle 3 1978 C SLOR Finite-element Isolated wings

Chen and 1979 C or KC SLOB Sheared conformal Axisymmetric inlets at angle of attack
Caughey

59  
with and without center bodies

I.

1w ,1
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TABLE 3.5

Grid features and computing times for several transonic wing computer codes (data taken from Ref. 61)

Code Wing chordwise Wing spanwise Total Approximate Number of
grid points grid points Field points CPU min. iterations

(CDC 7600)

Bailey- 37 25 41,000 6 200
Ballhaus
(includes grid
embedding)

FLO-22 61 (Root) 21 159,000 15 50-100
4o (Tip)

FLO-27 51 21 90,000 30 200

Ii

h1
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a) 0 MESH b) C MESH c) H MESH

Fig. 3.1 Several surface-fitted airfoil giid topologies
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a) CARTESIAN COORDINATES

tl

PLANE OF
- -- SYMMETRY

b) PARABOLIC COORDINATES X1 SYMMETR

c) SHEARED COORDINATES
Fig. 3.5 Construction of the sheared parabolic Fig. 3.6 Sheared parabolic coordinate system

coordinate system used in FL022, used in FL022, (Henne and Hicks [65])
(Jameson, et al. [48])

FLO-27 GEOMETRY

VERTICAL LINE
STREAMLINE RELAXATION

FLO-28 GEOMETRY

HORIZONTAL LINE MARCHING

RELAXATION DIRECTION

Fig. 3.7 Marching directions of relaxation Fig. 3.8 Comparison of the various FLO code
scheme used in FL022, (Jameson, geometry modeling capabilities,
et al. [48]) (Verhoff and O'Neil [66])
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Fig. 3.9 Pressure coefficient comparisons for a
rectangular planform NACA 0012 wing,
conservative versus nonconservative
differencing, (Chattot, et al. [57])
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Fig. 3.10 Comparison of FL022 results with
experiment for the ONERA M6 wing,Re 18 million, (Caughey, et al. [67]
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JAMESON(C) y/b = 0.20

BALLHAUS (C) y/b 0.19

+ X ONERA(NC) y/b- 0.23

0 0 EXPERIMENT y/b - 0.20

i +O

0',0

C "

01

x'c

Fig. j.15 Inviscid pressure coefficient comparisons

for the ONERA M6 wing configuration,
m

= 0.81i, a = 3 deg, (Chattot, et al. [571)
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Fig. 3.16 Boeing KC-135 wing and winglet pressure coefficient distribution
correlation, M.= 0.78 and a = 2 deg, (Boppe and Stern [47])
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Fig. 3.25 Wing/fuselage configuration used to
obtain the results of Figs 3.26 and
3.27, (Hicks (831)
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4J. VISCOUS INTERACTIONS

~4.1 Introduction

In transonic flows over airfoils and wings viscous effects play an essential role, greatly
affecting the resulting forces and moments. The primary effect is the shock-boundary layer interaction
which weakens the shock relative to the inviscid case usually causing a significant upstream displacement
of the shock. The difference of the viscous displacement thickness along the aft upper and lower surfaces
of the airfoil can alter the loading over the entire airfoil as well as displace the shock. Such aft
camber changes have pronounced significance for supercritical airfoils and conventional airfoils et lift
with large aft loading. An important viscous interaction can arise at the airfoil trailing edge which
modifies the Kutta condition used in inviscid flow to establish the local circulation. Such an inter-
action is complex, and our understanding of this phenomenon is incomplete presently. Finally the displace-
ment and camber effects of the near-wake can feed upstream to affect the airfoil pressure distribution.
These effects are, however, secondary relative to the displacement effects on the airfoil.

For airfoils and wings with small sweep, an adverse chordwise history effect arises when the
boundary layer encounters successive adverse pressure gradients such as through a shock and the trailing
edge pressure recovery (see Pearcey, Osborn, and Haines, Ref. 1). In this case, the boundary layer
thickens, and its velocity profile suffers a loss of fullness after passage through the shock. When the
boundary layer then encounters the second adverse gradient in this deteriorated state, it is less able to
remain attached, resulting usually in a severe separation and buffet. Such adverse synergism appears
primarily in flows over thick airfoils and for conventional airfoils at large lifts where severe aft
pressure gradients arise.

In the high subsonic region, leading edge separation is usually not of concern. Here the
appearance of severe buffet due to shock-induced and aft separations usually limits the permissible angle
of attack to well below that for which leading edge separation occurs.

For wings of larger swe2ep, an adverse spanwise history effect in the boundary layer arises
when a tipward spanwise flow of the low energy air occurs. This progressively thickens and thereby
deteriorates the outboard boundary layez in the tipward direction, promoting premature separation in this
region. The consequence is a contribution to a pitch-up instability and a loss of outboard control
effectiveness.

Separations on a swept wing can assume the planar bubble type separations where the separated
air is confined to the vicinity of the wing surface; but it can also assume the free sheer layer type
topology unique to 3D flows. Here the separated air, instead of remaining near the wing surface, is swirled
into a free vortex which detaches from the surface and trails downstream tied to a streamline. Such free
vortex separations can arise in shock-induced separations when the shock is sufficiently swept and
sufficiently strong as in the case of the forward shock at high lift. It can also arise together with a
bubble type separation occurring only over a portion of the span. Here part-span free separation vortices
are shed from each extremity of the bubble. Free separation vortices play a significant role, but unfortu-
nately the boundary layer procedures which we consider are incapable of handling such separations.

During the past several years, there have been important progress in the development of both
the planar (2D) and 3D boundary layer methods suitable for transonic applications. It is the primary
purpose of the present sections to review selected aspects of these developments. In particular we shall
confine our attention to integral boundary layer methods because of their demonstrated ability to yield
viable results with significantly less computing time than for example differential equation methods.
Procedures to couple the boundary layer and invisoid methods are reviewed, giving examples for both 20 and
3D flows including separated cases.

4s.2 Planar viscous interactions

Unquestionably the shock-boundary layer interaction offers the greatest difficulty (see Fig.1).
Here the flow is unsteady due to the interaction of the large scale coherent turbulence with the shock
wave. The shock itself penetrates the boundary layer and is non-uniform, weakening and vanishing as it
approaches and reaches the sonic line in the lower part of the boundary layer. Through the subsonic path
beneath the shock, the shook pressure-rise is attenuated (See laser velocimeter measurements of East,
Ref. 2).

Our goal is not the calculation of the complex flow sketched above, but the determination of
the time-averaged flow yielding the pressure distribution as measured for example by pressure taps in a
wind-tunnel test. For such a flow it is clear that the boundary layer approximations are invalid. Local
analytical solutions for the shock-boundary layer interaction have therefore been proposed isolating the
boundary layer and solving the resulting flow with an asymptotic form of the Navier-Stokes equations in a
triple-decked domain. (See Melnik Ref. 3 for a recent review.) There is, however, a fundamental difficulty
in posing the strong interaction problem in this isolated manner. By definition in a strong interaction
flow there is an essential coupling between the inviscid and viscous flows precluding any possibility of
isolating either of the flows. In isolating the boundary layer flow in the triple deck solution, the
difficulty arises in defining the boundary condition to be the prescribed at the outer edge of the boundary
layer where the flow is a function, not only of the local flow, but of the global strong interaction flow.
It is clear that the normal shock pressure distribution from the inviscid solution used above is inappro-
priate. More appropriate here might be to prescribe the oblique shock pressure distribution with a near-'
sonic post-shock pressure measured along the airfoil surface, but here pressure gradients across the
boundary layer would degrade such a prescription.

Matched asymptotic solutions were also used for the strong interaction between the inviscid
and viscous flows about the trailing edge of the airfoil (Ref. 3). Here also the viscous flow greatly
distorts the inviscid solution, so that it will be difficult to formulate the problem for only the viscous
portion of strong interaction flow. Here the boundary condition at the outer edge of the boundary layer
must reflect to first order the strong interaction effects. .0

Green's lag entrainment integral boundary layer method (Ref. 4s), despite being based upon the
boundary layer approximations, has recently yielded reasonable results for complex transonic viscous
interactions including those with separations (Ref. 5). It is thus an attractive procedure for use in
applications for the r.ear term, and in the present section we shall first briefly reviev, its principal
features and describo several procedures coupling it to inviscid methods.

,-0
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4.2.1 Green's lag entrainment method

This procedure comprise- a system of three first order ordinary differential equations, two of
which are obtained by integrating the continuity and streamwise momentum equations across the layer, while
the third is derived from the Bradshaw-Ferriss turbulent energy equation.

A form of these equations derived by East, Smith, and M4erryman (Ref. 5) is convenient to
describe important features of the equations. In the direct form one has

6*= F + FU(.
x 1 2Ue

x

or by rearranging terms, one has the inverse form

U = F 1(6*-F ) (4.2)
e 2 xl
x

Here Ue is the inviscid outer velocity, 6* is the displacement thickness, x the streamwise coordinate, F,
and F2 are functions of the boundary layer variables, and the subscript denotes differentiation. The above
equation is supplemented by a sufficient number of the original equations to obtain a fully determined set
of equations. The labelling of the above equations is primarily for identification purposes.

The above equations are also applicable for the wake when the skin friction coefficient is set
equal to zero, and a dissipation length scale parameter is halved to obtain the proper asymptotic far field
wake. The wake is usually treated in an approximate but adequate manner by dividing it into two independent
parts. Here each part is considered as half of a symmetric wake which patches onto the upper or lower
surface boundary layer in a continuous fashion at the trailing edge.

4.2.2 Invi*scid-viscous flow coupling

The problem on hand is complex and involves a transonic inviscid flow boundary value problem
in which the boundary layer and wake equations constitute boundary conditions along the airfoil and
contact jump conditions along the rear wake. Classically this problem is solved in an iterative fashion
treating the inviscid and boundary layer flows as separate problems. The inviscid solution over the airfoil
is taken as the first approximation. The resulting pressure distribution is then inputed into the boundary
layer and wake equations, which are solved to yield for example the displacement thickness. The latter is
used to define a new effective "shape" of the airfoil, which is then used to upgrade the inviscid solution.

The above procedure can be made to converge even with shocks present so long as the boundary
layer is not separated. When separation occurs, the procedure diverges. The cause can be seen in equation
(4.1). With separation the absolute magnitude of F2 assumes very large values. Small errors in the pressure
distribution will therefore lead to large changes of the displacement thickness, so that the above
iterative process then ceases to converge. As pointed out more recently by East, Smith, and Merryman
(Ref. 5), Green's equations in this case must be posed in the inverse form as given by equation (4.2).
That is, the viscous problem is to be posed such that the pressure gradient is determined for a given
displacement thickness input.

To be complementary, the inviscid problem may also be posed in the inverse or design mode; namely,
determine the airfoil slopes given the pressure distribution. The resulting iterative procedure with the
boundary layer and inviscid flows posed in the inverse fashion is, however, difficult to carry out. This
is due to the difficulty of determining an adequate initial guess for the displacement thickness or the
pressure distribution when the shock location is not known to assure a convergent iteration. Procedures to
circumvent this difficulty will be described in a latter section.

4.2,3 Weak coupling with exact potential methods

Two recent noteworthy contributions coupling Green's integral viscous equations with the exact
potential equation are due to Melnik (Ref. 3) and Collyer and Lock (Ref. 6). These methods have several
elements in common, both using the relaxation method of Bauer, Korn, Garabedian, and Jameson for the
inviscid flow and the weak interaction iterative procedure described above. They are thus restricted to
unseparated flows. The boundary layer displacement here was incorporated as an equivalent source distribu-
tion on the base airfoil, thus precluding the need to generate a new mesh after each change of the
effective airfoil shape.

Melnik's procedure differed from that of Collyer and Lock by the incorporation of an analyti- ,
cally derived modification of the trailing edge flow using matched asymptotic expansions discussed earlier.
A fully conservative shock capture procedure was used by Melnik, but a weighed average of the conservative-
and non-conservative shock point operators was used by Collyer and Lock to compensate for the potential
approximation to the shock jump conditions. The introduction of the non-conservative portion of the shock

11 point operator cun lead to some inconsistencies due to the non-telescoping (non self-cancelling) of the
I shock profile truncation errors. Moreover such compensations are usually unnecessary since viscous inter-
4 actions usually weaken the shocks sufficiently to permit the potential flow approximation to the shock

jump conditions. Both methods include a pressure jump across the wake for the curvature effect of the wake,
the latter, however, calculated in the approximate fashion described earlier.

For the unseparated cases considered, both methods yielded results comparing well with
experiments when the angle of attack and/or the Mach number were adjusted such that the lift was matched
in the comparison. In figure 2 is shown the test-theory agreement for a Whitcomb supercritical. airfoil
obtained by Melnik. In figure 3 is shown the test-theory comparison for the RAE 2822 airfoil obtained by
Collyer and bock with comparable agreement, not only in the pressure distribution, but also for the
boundary layer variables.

The above excellent test/theory agreement obtained both by Melnik and Collyer and Lock is
impressive, but the adjusting of the Mach number and/or the angle of attack in the respective calculations
to match the measured lift clouds the assessment of the two methods. An evaluation of computational methods
must await wind tunnel results for example with the wall interference fully defined,

There is, however, one question that must be resolved in the above procedures. In the calcula-
tion of the inviscid flow with a difference algorithm, shock waves are captured with a profile and a
thickness that are mesh size dependent being generated by truncation error viscosity. Typically the shock
profile is spread over three meshes. Use of such an unphysical pressure gradient would suggest an
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unphysical shock-boundary layer interaction. However, calculations with Green's equations in the direct
form show that when the boundary layer is attached, for a given pressure rise across the shock, the
post-shock values of the boundary layer variables are closely invariant with reppect to the thickness of
the shock. That is, halving the shock thickness, doubles the pressure gradient but halves the integration
interval, resulting in the near-invariant post-shock boundary layer variables. Thus the mesh-dependent
shock pressure rise profile will not be of concern, provided of course the above invariant values are
meaningful.

4.2.4 Strong coupling with the small disturbance inviscid method

Le Balleur (Ref. 7) and more recently Wai and Yoshihara (Ref. 8) coupled the integral boundary
layer method with tYe small disturbance relaxation method. These methods suffer relative to those
described in the previous section in the use of the small disturbance approximation for the inviscid flow.
On the other hanc an attempt was made in these methods to treat separated flows.

Consider first Le Balleur's semi-direct method for the separated cases. Here an iterative
coupling procedure was used where the viscous equations were formulated in the inverse form as appropriate
for the separated case. However, to avoid the problem of initiating the iterative procedure in the inverse
mode described earlier, the inviscid flow was posed in the direct mode. With an initial guess for the
airfoil slopes and the displacement thickness, the inviscid and viscous problems were each solved to yield
pressure distributions which in general would not match. By a local linear inviscid analysis, changes of
local shape compensating for the above differences of the pressure were determined. These shape changes
suitably under-relaxed were then used to upgrade the shape inputs.

Variants of Le Balleur's procedure have also been used for example by Carter (Ref. 9) and
Wigton and Holt (Ref. 10). These procedures have yielded reasonable results for attached cases with
significantly less success for separated cases. The latter most probably is due to the failure of the
linear displacement thickness correction in the non-linear shock region.

In the method of Wai and Yoshihara (Refs 8 and 11), the small disturbance line relaxation
method (TSFOIL code) is used for the inviscid flow. Instead of the iterative procedures for the viscid-
inviscid coupling of the previous methods, the viscous equations were prescribed directly as a boundary
condition for the inviscid flow calculations. With the displacement slopes added, the airfoil tangency
condition becomes

y = fx + 6* (4.3)
y xX

where ( is the perturbation potential, y the transverse coordinate, y = f(x) defines the airfoil, and the
subscripts denote differentiations. If one now inserts the displacement slopes from equation (4.1) into
equation (4.3), one obtains the required viscous tangency condition for the airfoil given by

=f ' +F' +F'2Px (4.4)

Here F, and F2 are functions of the boundary layer variables, which in a given relaxation step, must be
evaluated from the previous iteration.

In the above procedure there are no iterations performed between the inviscid and boundary
layer flows as in the weak interaction case, so that a distinction between the inverse and direct formula-
tions does not arise. The above procedure may thus be used for both attached and separated cases.

The above procedure was used to calculate the flow over the RAE 2822 airfoil at M = 0.75,
angle of attack 3.19 degrees, and the chord Reynolds number of 6.2xI0

6 
(61 cm chord). Experiments (Ref. 12)

showed this to be a case with shock-induced separation with reattachment just upstream of the trailing
edge.

In figures 4 and 5 the calculated and experimental results are compared. Reasonably good
agreement in the pressure distribution is seen here, but the displacement thickness is overpredicted.
Calculations furthermore do not predict reattachment undoubtedly due to the overprediction of the displace-
ment thickness. Here the good test/theory agreement of the pressure distribution despite the poor agreement
in the post-shock displacement thickness is not inconsistent with the stiff property of Green's equations
in separated flow described earlier. In general the test/theory comparison shown here is good, but further
refinement of the interaction procedure as well as in the boundary layer equations is needed.

4.3 Three dimensional viscous interactions

Both three dimensional (3D) integral as well as differential equation boundary layer methods
have demonstrated their ability to yield viable results witn reasonable computing times (for example see
Refs 13 and 14). In the following we shall restrict our consideration to the integral methods which have
yielded comparable results with less computing times relative to differential equation methods.

4.3.1 Integral boundary layer methods

In the following we shall review the general features of 3D integral methods as typified by

those of Smith (Ref. 15) and Stock (Ref. 16) both based on the earlier method of Myring (Ref. 17). The
starting point is the set of two momentum equations and the ontinuity equation, simplified in the boundary
layer limit. The velocity components are taken along and normal to the outer inviscid streamlines, while
generalized curvilinear coordinates are used for the independent variables. Here the streamwise component
of the velocity was selected to carry over the planar experience. The choice of the non-orthogonal coordi-

nate system permits a flexibility to tailor the grid system to the problem on hand.
The firal form of the equations are obtained by integrating the set of equations across the

layer. The resulting integral terms are then evaluated b.- postulating profiles for both velocity components
and eliminating the density by the Illingsworth-Stewartson transformation where the integration differen-
tial element is scaled by the density.

For the entrainment function appearing in the integral continuity equation, both the local and
lag models were carried over from the planar case.

The final equations form a set of three first order quasi-linear partial differential equations
for five dependent variables, for example, for the streamwise momentum thickness, the compressible form
factor (H), the angle B between the outer and limiting surface streamlines, and the two components of the4t
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inviscid velocity at the edge of the boundary layer.
As in the planar case, the above set of boundary layer equatiorns are in principie full.y

determinate when they are posed as a boundary condition along the wing surface and contact jump aondit i nF
along the wake for the transonic inviscid problem. In this form the boundary layer equations, -:f theaselve:
cannot be characterized, for example, with respect to their characteristics, as in a fully detertisnate
set of first order quasilinear partial differential equations.

In the iterative procedure between the inviscid and boundary layer flows, the equations for
the latter are made determinate by considering two of the five dependent variables as known inputs. 'Thus
in the direct case, the two components of the outer velocity are considered as inputs. In this case, a
fully determinate set of equations results which is found to be fully hyperbolic. Three sets of character-
istics arise, two of which conform approximately to the cuter and limiting streamlines, while the third
lies in between. With the problem fully hyperbolic in the direct case, the formulation and solution of the
problem are straightforward. Hence the method of characteristics forms a reliable guide (Ref. 1S). T.hus
initial or starting conditions must be furnished along a space-like line near the wing leading edge where
the values of the dependent variables must be prescribed. Additionally boundary conditions must be
prescribed along time-like boundaries as along the wing centerline or the tip chord when the r-.nge of
influence of these boundary points falls onto the planform. Here the number of data to be prescribed
equals the number of characteristics pointing into the planform.

Thus in the case of the wing alone, the wing centerline is an outer streamline and hence a
characteristic. The other two characteristics, including the limiting streamline, point into the planform,
so that two conditions must be prescribed; and these are furnished by the centerline symmetry conditions.
The situation for the wing-fuselage configuration is more complex since the fuselage boundary layer, and
in particular the wing-fuselage juncture boundary layer, must be taken into account. Because of our
present inability to calculate the latter in an expedient fashion, the inboard boundary condition must be
approximated. In reference 16, for example, wing-alone centerline symmetry conditions were used. The
resulting error, so far as the direct boundary layer problem is concerned, is confined to the narrow range
of influence bounded by the wing centerline and the limiting streamline characteristic from the wing apex.
So far as the overall solution is concerned, however, the effect of the juncture boundary condition extends
further onto the wing through the inviscid flow. Thus, for example, the effects of a shock wave on the
wing interacting with the juncture boundary layer can extend well beyond the above range of influence.

A difficulty also arises for the boundary condition at the wing tip. In the lifting case a
separation vortex appears when the tip is sufficiently sharp or the lift sufficiently high, necessitating
the simultaneous consideration of the boundary layer on both sides of the wing. Moreover, the 3D boundary
layer methods in consideration are incapable of treating such a flow. Thus an approximate treatment of the
tip flow must be made. The boundary layer calculations can be marched independent of the tip condition to
the outer streamline characteristic bounding the range of influence of the tip. In the latter inaccessible
region, the boundary layer variables must then be approximated in a benign fashion, for example, by a
simple outboard extrapolation. The resulting consequences should not be great, since the region is usually
small, and the error should not extend much beyond the narrow range of influence of the tip chord.

For the direct problem formulated above, a reliable numerical procedure is the method of
characteristics. Here the characteristic coordinates are constructed in the process of the solution, and
their use insures the proper domain of depend-nce. It is, however, more expedient to carry out a finite
difference marching process in a suitably chosen direction. In the references mentioned above an explicit
difference scheme was employed, and this should suffice for present applications since the overall
computing times are usually relatively insignificant. Significant reductions of computing time can, of
course, be achieved by using well-established implicit schemes as the alternating direction methods if
future applications necessitate reduction of the computer time.

Difficulties in the marching procedure for the direct problem can be anticipated from the more
familiar analogous problem of the planar rotational supersonic inviscid flow. Here the Mach waves corres-
pond to the outer and limiting streamline characteristics. In the supersonic flow, it is well-known that
compressive Mach waves of one family can coalesce forming a cusped envelope and an overlapping flow. Flow
discontinuities in the form of shock waves and contact (slip) surfaces can also arise as permissible weak
solutions. The above Mach wave envelope anomaly is then precluded by the appearance of a shock wave.

In principle, the above solution features can formally arise also for the 3D integral boundary
layer equations in the direct form. For example, an envelope of the limiting streamline characteristics is
suggested in the calculated results shown in figure 6 from reference 19. Such an envelope in the boundary
layer implies a need, not of a shock wave type discontinuity, but more likely of a contact surface. With
the correct outer velocity input, this envelope is suggestive of a separation line. In such a case, the
"reversed" flow downstream of the separation line must be marched upstream towards the separation line,
posing a difficult numerical problem. 4

To resolve this difficulty, the inverse formulation of the boundary layer equations was
suggested (Refs 19 and 20). Here the outer velocity components are now considered as dependent variables,
and two of the boundary layer variables are considered as inputs. In the next section a successful example
of the indirect procedure for a separated case is given. It is thus clear that in the indirect formulation

I the nature of the differential equations and the characteristic families must be significantly altered. It
I would be of interest to derive the resulting characteristics for the indirect equations. Finally it will

4 A be of importance to determine the physical significance, if any, of the possible discontinuities of the 3D
integral boundary layer equations which must be expressed in the proper conservation form for this purpose.
Though straightforward, these significant analyses have not appeared in the published reports.

4.3.2 3D coupling examples

There are but few cases reported for the viscous interactions arising for a wing or a wing/
fuselage configuration. One recent example is due to Firmin (Ref. 21) who treated a wing/fuselage configu-
ration and incorporated a wake calculation. Here the inviscid flow was calculated by the RAE small S
disturbance line relaxation method which did not capture the shock conservatively; and the boundary layer
and wake flows were computed with the method of Smith with lag entrainment. The two flows were coupled by
the weak interaction procedure.

The sheared coordinate transformation was used for the inviscid flow in which the wing planform
IS Mapped to a rectangle. Essentially the save coordinate system was used for the boundary layer and wake.
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For the boundary layer, the initial conditions were prescribed along a line downstream of the
leading edge where the prescribed values were calculated assuming an infinite yawed wing boundary layer.
Only the wing boundary layer and wake were computed, inputting wing-alone symmetry conditions at the
wing-body juncture. The boundary layer and wake were extrapolated to their outboard side edges by one-
sided inboard differences. A marching scheme with an explicit difference scheme was used with the boundary
layer updated and relaxed after each ten iterations of the inviscid flow. Overall the computing time was
found to be approximately doubled by the addition of the viscous effects.

Several cases were calculated by Firmin, and in figure 7 one of the cases is shown where the
calculated pressure distributions are seen to compare well with experiments.

Comparable test-theory comparisons were obtained by Stock (Ref. 20) for several wing planforms.
There have been several calculations with the indirect procedure demonstrating its ability to

calculate separated flows. These are due to Cousteix and Houdeville (Ref. 19) and Stock (Ref. 20) who
treated the case of an infinitely yawed flat plate with 35 degrees yaw at incompressible velocities. This
case was tested by Van den Berg and Elsenaar (Ref. 22). The latter measured all of the dependent variables
appearing in the 3D integral boundary layer equations. The inverse method was then tested by inputting two
of the measured boundary layer variables, and then calculating the remainder of the dependent variables
and comparing them to the measured values. (Note that the above calculation was carried out earlier by
Elsenaar et al., Ref. 23, by the differential equation method.)

The above two calculations were carried out for different free stream velocities so that they
cannot be compared. Both results compared well with experiments. In figure 8 is shown the excellent test-
theory agreement obtained by Stock. Compared are the streamwise momentum thickness 011 , the skin friction
coefficients, angle between the outer and limiting streamlines 8, and the outer velocity vector in polar
representation. In the above figures the calculated and measured separation points are shown.

For most of the procedures described above for the direct problem, the cross-flow velocity
profile is defined in terms of the streamwise profile as in the frequently used Mager's cross-flow profile.
In the case of separated flow such cross-flow profiles would be inappropriate since the. cross-flow velocity
profile would reverse when a reversal occurred in the streamwise profile. To circumvent this conceptual
difficulty, in the above calculation, Stock (Ref. 20) decoupled the streamwise and "transverse" velocity
profiles and introduced an empirically based "flat plate" profile in the transverse direction defined by
the local isobar.

The above computations did not involve the inviscid flow, serving only as a consistency check
for the boundary layer equations and a feasibility test of the indirect procedure. There still remains the
task of devising a suitable and expedient procedure to couple the boundary layer and inviscid flows for
the separated case.

4.4 Concluding remarks

The above brief review has illustrated some of the recent achievements in computing transonic
viscous interactions. Though further development is required for the planar separated cases, the future
effort most in need is for the 3D viscous interactions arising in wing-fuselage configurations.

Because of their complexity, 3D transonic turbulent flows must be treated phenomenologically
for the near future. Experiments are thus needed to improve the definition of the turbulence including the
entrainment phenomena particularly for the separated case; to improve the modelling of the 3D shock-
boundary layer interactions; and finally to provide a reliable comparison base to assess the computational
methods. In the latter, results free of wall interference are not necessary, so long as the conditions
along the walls are measured to be inputted as wall boundary conditions in the computations.

The present review is not intended to be complete. Many excellent investigations are omitted,
and these are described and referenced in the more complete reviews of references 3, 7, 11 and 24.
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5. COMPUTATIONAL PROCEDURES IN TRANS0dIC AERODYNAMIC DESIGN

5.1 Introduction

The availability of computational methods for transonic flow has greatly improved the possibil-
ities for the early, but admittedly approximate, aerodynamic analyses of given configurations. The greatest
potential of such a capability, when suitably adapted, is probably in the possibility of generating shapes
that will perform aerodynamically as required. In this design mode, computational aerodynamic methods are
really complementary to wind-tunnel testing

1
.

The purpose of this chapter is to review some of the computational procedures for transonic
aerodynamic design tiht can be found in the literature. Since, at least to the author's knowledge, there
exist no such methods for arbitrary 3-D bodies, the discussion is necessarily limited to computational
procedures in airfoil and wing design. For convenience we will distinguish between three different catego-
ries of such procedures, viz.
1. Procedures involving indirect methods. Indirect methods are characterized by the fact that, in principle,

the designer has direct control over neither aerodynamic quantities such as lift, pitching moment and
pressure distributionnor over the geometry. Rather than specifying such quantities directly, the
designer has to manipulate a number of (generally non-physical) parameters and see what comes out of it.
The hodograph and fictitious gas methods are in this category.

2. Procedures involving inverse methods. In this category we will consider methods for solving the classi-
cal inverse problem of aerodynamics, i.e. determine the shape of an airfoil or wing for a given pressure
distribution (and hence given lift, pitching moment, etc.).

3. Design and optimization by means of direct methods. This category is characterized by the use of direct,
analysis methods. It ranges from the simple cut and try approach, in which an analysis method is used
as a checking tool, to more sophisticated automated procedures in which an optimization algorithm and a
direct fluid dynamics solver are linked together to minimize some aerodynamic object function.

After discussing examples from each of the three categories listed above some concluding remarks are made
concerning the limitations of the various approaches including suggestions for improving the applicability
and efficiency of aerodynamic design methods.

5.2 Indirect methods

5.2.1 Hodograph methods

The first successful computation of transonic potential flow about airfoil-like shapes was
performed by Nieuwland , using analytic hodograph theory. Methods based on hodograph theory make use of the
fact that, in hodograph (u,v or q,6) variables the partial differential equations of compressible potential
flow are linear, in contrast to the partial differential equations in the physical plane. This feature is
used extensively in the sense that solutions are constructed by linear superposition of fundamental solu-
tions of the hodograph equations. Although, in theory, it is possible to model shock waves, this turns out
to be very difficult in practice. Hence, hodograph methods are limited to generating shock-free flows,
which, of course, is of interest for drag minimization. The advantage of the linearity of the partial
differential equations is, at least partly, offset by the fact that the mapping from the hodograph plane to
the physical plane must be determined. If the mapping turns out to be singular outside the area occupied by
the airfoil in the physical plane, the solution is meaningless from the physical point of view.

For the applied computational aerodynamicist an accessible revi&w of hodograph methods has
been given by Boerstoel

3
. Distiction can be made between incompressible flow transformation methods

(Nieuwland
4
, Takanashis) and compressible flow hodograph image transformation methods (Boerstoel-Huizing

6
,

Sobieczky
7
, Eberle

8
). The method of Garabedian and Korn

8 
,1 carries aspects of both categories.

The incompressible flow transformation methods are characterized by the fact that hodograph
solutions for incompressible flow are taken as a starting point. These solutions are transformed to com-
pressible flow by means of a suitable mathematical technique4. A flow chart of this design technique, taken
from reference 3, is reproduced in figure 5.1a. The input consists of parameters defining the superposition
of incompressible flow solutions and the free stream Mach number of the compressible airfoil flow that is
being sought. The output is an airfoil shape and corresponding pressure distribution. The major difficulty
of the incompressible flow transformation method is that, in order to obtain the degree of freedom required
for generating airfoil flows of engineering interest, the basic incompressible flow solution must be
described by many parameters. Choosing and tuning of these parameters has turned out to require a major and
indeed prohibitive effort of the user-aerodynamicist. In spite of this, the technique has produced several
airfoils of engineering interest. In particular since it was found that parts of the contour of shock-free
airfoils can be modified to better suit engineering requirements without drag penalty1,

12.

Although based on different mathematical techniques the hodograph method of Garabedian and
Korn

9,10 
suffers from the same difficulty. In their approach, the problem of constructing solutions to the

4q hodograph equations for compressible flow is formulated as a characteristic initial value problem by

4 ,extending all real dependent and independent variables of the equations for compressible irrotational flow4into the complex domain. This initial value problem is solved along the complex characteristics by means of
finite differences.

In the method of Garabedian and Korn it is the choice of the initial data that determines
whether flows of engineering interest are obtained. This choice is guided by know-how of incompressible
flows about airfoils. The problem of choosing the initial data in the complex characteristics method and
that of choosing the incompressible flow parameters in the hodograph transformation methods are of compara-
ble difficulty. For this reason the method has, apparently'

4
, not met with wide application in industry.

However, airfoils produced by the authors of references 9, 10 (see Ref. 10 in particular) contain several
examples of engineering interest; some of these have been reproduced in figure 5.2. Note that most of the
airfoils of reference 10 exhibit an open trailing edge of finite thickness. This is due to the fact that
the method contains a primitive correction for boundary layer effects, the validity of which, however, is
doubtful.

The problem of constructing flows of sufficient engineering interest with acceptable effort has
been reduced, to some extent, in the second category of hodograph methods, i.e. the compressible flow
hodograph image transformation methods

3
. In the latter methods the (estimated) image on the hodograph plane

of the desired airfoil is the input of the calculation process (Fig. 5.1b). This image constitutes the

ai l
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boundary condition in a Tricomi-like boundary value problem for the stream function in the compressible
hodograph plane. After solving this boundary value problem the flow in the physical plane is, again,
obtained by determining the mapping from the hodograph to the physical plane.

In the method of BoerstoelG the solution is constructed by the linear combination of basic
compressible flow solutions. The coefficients in the linear combination are determined so as to, approxi-
mately, satisfy the boundary conditions in the Tricomi boundary value problem. Sobieczky

7 
has ingeniously

circumvented the Tricomi boundary value problem (and the associated question of well-posedness) by modify-
ing, for M > 1, the gas law in such a way that the partial differential equations remain elliptic every-
where in the flow field. In this way the Tricomi boundary value problem can be replaced by a Dirichlet
boundary value problem. When the Dirichlet problem has been solved, the part of the solution corresponding
to M > 1 with incorrect gas law, is replaced by the solution of a Cauchy initial value problem with the
correct gas law and with the initial conditions at the sonic line M = 1 taken from the solution of the
Dirichlet problem.

In (7] Sobieczky utilizes the rheo-electrical analogy for solving the Dirichlet problem.
Eberles has constructed numerical approximate solutions to the Dirichlet problem by converting it into an
integral equation problem which is then solved by means of singularity distributions (panel method). The
Cauchy initial value problem is solved by a numerical characteristics method.

Although the compressible flow hodograph image transformation methods are more "user-oriented"
than the incompressible hodograph transformation methods they still suffer from the fact that appreciable
user's experience is required in specifying the hodograph image such that the transonic airfoil flow
pursued by the designer is realized. Nevertheless, the technique has produced many airfoils suitable for
engineering applications

13
. A summary of airfoils and their corresponding design pressure distributions

taken from Boerstoel's
3
,
6 

and Eberle's
e 
work have been reproduced in figures 5.3 and 5.4, respectively. It

can be noted that the hodograph image methods are capable of producing airfoils of considerable variety.

In an effort to make their hodograph method more user-oriented, Bauer, Garabedian and Korn"4

have extended their method so that shock-free airfoils can be obtained with pressure distributions satis-
fying prescribed data with the smallest possible deviation. Hence the method can also be classified as an
approximate inverse method. Note that the prefix approximate is necessary because a solution to the problem
of finding an airfoil with transonic shock-free flow that satisfies a given pressure distribution does not
necessarily exist. Neither does, of course, the transonic shock-free flow about an airfoil of given
geometry (Morawetz1

5
). We will return to this point in sections 5.3 and 5.5.

In [1] the solution of the non-linear boundary value problem of designing a shock-free airfoil,
on which the pressure or speed is assigned as a function of the arc length, is approached iteratively as
follows (Fig. 5.1c). First the complex analytic function is determined that maps the unit circle in the
complex domain onto the region of flow in the hodograph-plane for the case of an incompressible flow with
the prescribed velocity distribution. With the mapping function given, a new,compressible flow is calculated
using the method of complex characteristics. From this a relation between the velocity q and arc-length s
in compressible flow is calculated and compared with the required relationship. The difference, in turn,
leads to an improved approximation of the mapping function through updating of the incompressible flow q-s
relationship. The process is repeated until a compressible flow is found that fits the prescribed data
adequately.

From the point of view of aerodynamic design, the possibility of designing (approximately) for
a given pressure distribution implies clearly a significant advantage over the more classical hodograph
methods. Note, however, that solutions may still have to be disregarded when the mapping from the hodograph
to the physical plane contains unacceptable singularities (limit lines).

Examples of airfoils designed with the above method (a computer code listing of which is con-
tained in (11]) have been reproduced in figure 5.5. The examples suggest that, provided a physically
realistic pressure distribution is asked for, the pressure distribution of the resulting shock-free airfoil
can be quite close to the required one. Another example, not conforming to this requirement, is given in
Section 5.5.

5.2.2 Fictitious gas method

Perhaps the most severe limitation of hodograph methods is that the concept cannot be extended
to three dimensions. This limitation has been overcome in the more recently evolved (semi-)indirect methods
based on Sobieczky's fictitious gas concept. The fictitious gas methods are closely related'

6 
to the

Sobieczky-Eberle hodograph methods mentioned in the preceding section. Both are based on the concept of the
elliptic continuation of the subsonic part of a mixed subsonic/supersonic flow field into the supersonic
zone by modifying the pressure-density (or velocity - density) relation. However, instead of working in the
hodograph plane the fictitious gas method

1 7 
utilizes a direct (analysis) transonic potential flow method of

the type described in chapter 3 with the pressure (velocity)-density relation modified locally whenever
Mlocaj> 1. The modified analysis code is used to compute the fictitious gas flow about a given base confi-

B guratlon, the transonic wave drag characteristics of which, at given angle of attack and Mach number, have
to be improved. When the solution to the fictitious gas flow problem is known, the correct supersonic flow

1 1field inside the sonic surfaces is determined by solving an initial value problem with the initial data
given on the sonic surface. The new correct flow inside the sonic "umbrella" defines a new stream surface
that is tangent to, and has the same curvature as, the stream surface (contour) at the intersection of the
sonic surface and the original body. In this way a part of the original body is modified and indeed in such
a way that, at the same conditions of Mach number and angle of attack a transonic shock-free flow is
obtained. Hence, the fictitious gas method should be considered as a shock-free redesign method".

An appealing feature of the fictitious gas method is that, in principle, any available 2-D or
3-D analysis code may be modified and used to solve the elliptic part of the problem. In 2-D, Sobieczky
et al." use Jameson's FL06 code 1, while in another application of the concept Eberle1 uses a 2-D
version of his finite element method. Applications in 3-D have seen the use1 ,21 of a Bailey-Ballhaus type
of transonic small perturbation code as well as the more advanced Jameson-Caughey full potential FL#22 and
FL027 codes ([18], [21]). As demonstrated in (22) and (231 it is also possible to utilize analysis codes
including viscous-inviscid interactions.

In two dimensions1 7,2 9 the initial value problem in the supersonic part of the flow field may
be solved by means of either a characteristics method in a hodograph-like working ?lane, similar as in the
Sobieczky7 /Eberlee hodograph methods, or by a finite difference marching procedure 4. In 3-D a marching

r
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procedure is used, going iniuard from the sonic surface by successive surfaces of constant density for the
full potential equation or constant longitudinal flow speed u for the small perturbation equation.

An important point to note is that the (re)design problem as sketched above does not always
have a useful solution. This is associated with the character of the initial value problem to be solved in
the supersonic part of the flow field. In the 2-D hodograph plane the problem is well posed and the solu-
tion is readily found. However, as mentioned earlier, the solution may not be useful because of the
appearance of limit lines in the transformation from the hodograph to .the physical plane. Limit lines or
surfaces may also appear directly when the marching procedure is used'7,20 If they appear, a next attempt
towards a physically meaningful solution may be made by using a "more elliptic" fictitious gas law. An
additional complication in 3-D is that the initial value problem for the supersonic domain seems to be
ill-posed

17
'
20

; i.e. small changes in the initial data will cause large changes in the solution elsewhere.
As a consequence the marching procedure, or, indeed, any numerical method, is unstable in principle.
However, the instability appears to be manifest only when spanwise gradients are large, and, apparently,
is of little consequence for moderate to high aspect ratio wings20

It is interesting to note at this point that indications of "ill-posedness" have also been
found for the 3-D inverse problem in incompressible flow'. We will return to this point in Section 5.3.

Some examples of application of the fictitious gas method are reproduced in figures 5.6 and
5.7. Figure 5.6, taken from [17], shows the (inviscid) shock-free redesign of the MACA 64A410 airfoil at a
Mach number of 0.72 and 0.4 degrees angle of attack. Note that the modified airfoil is somewhat thinner and
has a 10 % lower lift coefficient. An illustrative 3-D example, taken from [22] has been reproduced in
figure 5.7. Shown is the result of the shock-free redesign of a 15.70 swept wing built-up from GA(W)-2
type airfoil sections. This type of airfoil is known to have good low speed C~ma characteristics, but as
indicated by the figure, the high speed characteristics at M = 0.8 are poor. Also shown is the result
of a shock-free redesign at M. = 0.8 which has not affected the first 9 % of the airfoil chord. Because of
the latter it can be expected that the new wing will also have a good low speedCa.

Examples such as this serve to illustrate the point that the fictitious gas method is a viable
tool for the shock-free redesign of a given wing in the final stages of the aerodynamic design process.
However, because of the fact that a suitable basic shape is required from the outset, additional tools
such as those described in the following section are required if the complete aerodynamic design of a wing
or airfoil is the objective.

It seems appropriate at this point to comment on the, apparently, still wide-spread misconcep-
tion that, from an engineering point of view, shock-free flows are less interesting than other supercritical.
airfoil flows. This is so, it is argued, because the best LID for a given Mach number is always obtained
with a weak shock present and also because of the large aerodynamic center shifts that would be produced
by shocks occurring at slightly off-design conditions.

The correct statement that (L/f)max is obtained when a weak shock is present does not necessa-
rily make "shock-free" designs less attractive. In fact, "shock-free" designs very seldom turn out to be
really shock-free in practice. DJu, to inappropriate boundary layer modelling, wind tunnel wall interference
and aeroelastic distorsion, most if nit all shock-free designs will exhibit weak shock waves at and around
the design CL and Mach number in the vii ,d tunnel or atmospheric flight environment. Shock-free designing
must therefore be viewed as one (of several) possible means to design for flows with small or negligible
wave drag for a certain range in CL and Mach number. The reader is referred to the Round Table Discussion
contained by [25] for a recent discussion on the issue. The possible problem of rapid shifts with Mach
number of the aerodynamic center is not confined to shock-free designs. Such rapid shifts occur on most
advanced and many conventional airfoils at significant transonic conditions. Airplane designers have
learned to live with it, with Mach trim compensators found on most commercial jet transports.

5.3 Inverse methods

5.3.1 General

While the indirect methods discussed in the preceding section are characterized b~ the fact
that the designer can exercise direct control over neither the aerodynamics nor the geometry U, he does
have direct control over the aero-dynamics (but not over the geometry) when using inverse methods'. In the
inverse problem of aerodynamics the shape is to be determined of an airfoil or wing with given planform
that will, for a given Mach number, produce a given pressure distribution and hence given lift and pitching
moment, spanwise lift distribution, etc. In incompressible potential flow, the problem is non-linear in the
boundary conditions. In transonic flow it is non-linear in both the boundary conditions and flow equations.

Due to the non-linearity of the boundary conditions, the inverse problem is fundamentally more
complicated than the analysis problem. This is already so in the case of 2-Dl incompressible flow, as pointed-
out by Lighthill2 and Woods27, and recently by Volpe and Melnik

2
8. In particular it has been demonstrated

by Lighthill that a unique and correct solution to the inverse problem of 2-Dl, incompressible flow does not
exist unless the prescribed velocity distribution satisfies certain integral constraints associated with

4h ~ airfoil closure and with the fact that the free stream is given in magnitude and direction. Woods2 pointed
4 . out that similar constraints are also required in the mixed design problem in which the pressure distribu-4 tion is prescribed for some parts of the airfoil and the shape is prescribed for other parts. Volpe and

Melnik2
o have pointed out that the role of constraints and the question of correct formulation of the

inverse problem have never been properly addressed for (2-D) compressible flows and that, as a consequence,
most existing inverse codes for transonic flow are based on improper formulations of the inverse problem.
For 3-Dl flows the situation is still more unsatisfactory. To the author's knowledge the question of proper
formulation has not been addressed even for incompressible flows. This, however, has not prevented the
development of useful transonic inverse procedures.

5.3.2 Methods based on small perturbation theory

The problem of non-linearity in the boundary conditions (and of course that of generating a
boundary fitted coordinate system) is avoided when the boundary conditions are satisfied in the wing mean
plane, as in TSP theory. The additional conditions to be satisfied for a proper formulation of the inverse

0) This is, of course, not completely true for the fictitious gas methods.
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TSP problem are not known. However, we do have some indications about such conditions from the limiting
case of incompressible flow, i.e. from the classical thin airfoil and thin wing theories. For a good
understanding of the inverse problem it is useful to consider these first.

In thin airfoil theory 2 9, the symmetric (thickness) and antisymmetric (lifting) parts of the
incompressible flow are described by the following integral relations

ut(x'±0) = [ E -. 0

+
1(u( )] - d

wl(x ,±0) -- - (5.2)
0

In these expressions ut is the chordwise perturbation velocity due to thickness and w£ is the perturbation
velocity normal to the y-axis due to lift. [w],l and u]N0  denote the jumps in normal and chordwise velocity0across the slit (0 4 x 4 1, y = 0) where the airfoil boundary conditions are satisfied. With the linearized
boundary conditions, [w]8 and w, are related to the geometric airfoil quantities as follows

0+ dzt
[w] O- = 2 -- (5.3)

dz
w?= C- (5.4)

dx

where the subscripts t and c refer to thickness and camber, respectively, and a is the angle of attack.
In the direct problem, with the geometric properties (5.3), (5.4) given. (5.1) must be con-

sidered as an integral expression for ut and (5.2) as an integral equation for tu] 0_. Equation (5.2) is
the classical integral equation of lifting surface theory. It is well known that equation (5.2) does not
have a unique solution, unless an additional condition is satisfied; the reason being that there exists a
non-trivial solution of the homogeneous equation. In thin airfoil theory the Kutta condition

0+

u(x=1)1O- = 0 (5.5)

is the additional condition that guarantees a unique (and indeed physically relevant) solution.
In the inverse problem the situation is exactly opposite. We then have the situation that

equation (5.2) represents an integral expression for determining the camber and incidence from the speci-
fied load distribution [u], while (5.1), with (5.3), represents an integral equation for the unknown
thickness distribution.

Since the integral equation (5.1) of the inverse thickness problem is the same as that (5.2) of
lifting surface theory we must also specify an additional condition to be satisfied in order to have a
well-posed problem with a unique solution. The relevant choice to be made for this additional condition is
of course the closure condition

1 +
f[.()]_ d& = c (5.6)
0 0

requiring that the airfoil be closed (C = 0) or have a given trailing edge thickness (C > 0).
It can be shown that in the mixed boundary value problem, in which the velocity distribution is

prescribed over part of the slit and the geometry over the remainder, both a condition fixing the circula-
tion and the closure condition must be enforced in order to obtain a problem with a unique solution. It is
emphasized that without satisfying, either explicitly or implicitly, the necessary additional condition(s)
any numerical scheme is bound to fail. Corresponding additional conditions must be satisfied in the case of
3-D (thin) wing flow (see e.g. (30]).

Early work on a mixed direct/inverse method for transonic airfoil design based on transonic
small perturbation theory and utilizing finite differences has been reported by Steger and Klineberg31 .
These authors have studied the problem of an airfoil in transonic flow with given leading-edge geometry
with the pressure distribution specified over the remaining portion of the chord. A perturbation velocity
potential formulation was used in the leading-edge region and a first order equation system

"- + av .0 (continuity) (5.T)

ax az
.u_ aw = 0 (irrotationality) (5.8)

a. a ax
in the remainder of the flow field (Fig. 5.8). F was chosen according to the Guderley-Von Karman formulation
of TSP theory (see Sect. 2.1.3). Steger and Klineberg do not mention and, apparently, do not explicitly
satisfy the necessary additional condition (closure) required for uniqueness. However, at the same time,
rather than specifying u directly as a boundary condition in the finite difference relaxation process, they
utilize an iterative procedure in which, successively,

i) % complete relaxation sweep is performed with direct (analysis) boundary conditions for an estimate of
the required geometry

ii) an improved estimate for the geometry is obtained from the irrotationality condition (5.8) by, succes-
sively; au
U.1) replacing u(z - 0), on the slit (Fig. 5.8) in the finite difference expression for -u(Z=0),by

the required surface valu of u. 3Z

ii.2) chordwise integration of x to yield
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dZ+ xaw
w+ --- = T (,z = ±O)dC + C,

xI

= fu (&,z = ±0)dC + C1  (5.9)

xI

and
x

=+ f w~dx + C 2 (5.10)
xl1

dZ
the constants of integration C I and C2 being used to enforce continuity in Z and i at x1 , where
the new shape is joined to the fixed leading-edge geometry.

Although a convergence proof for the procedure is not given, the process does apparently converge. Not in
the least, according to the authors, because they maintained consistency between the numerical formulation
of direct and inverse boundary conditions, and presumably also because a Neumann type boundary condition is
satisfied in each relaxation sweep. Note, that there is no control over the trailing-edge gap, and that the
angle between the free stream and the reference coordinate system is held fixed (Fig. 5.8), implying that
the orientation of the given leading-edge geometry with respect to the free stream is also fixed.

t While the examples presented by Steger and Klineberg are of a fairly academic nature, Langley
32

of ARA, utilizing a similar iterative procedure, but a (non-conservative).Murman and Krupp
33 

type perturba-
tion vejocity potential formulation through the entire flow field, succeeded in carrying the inverse TSP
method to appreciably more practical levels of application. The latter is reflected in the fact that Langley
arranged his program to have various options. For example, the upper surface and lower surface, aft of a
fixed leading-edge geometry, may be altered simultaneously or separately; alternatively the pressure distri-
bution may be specified over the upper surface and the thickness distribution may be kept constant. The
latter option was incorporated in order to avoid problems like negative or too large trailing-edge thickness
which, as in the Steger/Klineberg approach, may result from the absence of control over airfoil closure.
It is interesting to note that Langley, in [32], reports the failure of attempts to solve the inverse
problem directly by enforcing the Dirichlet boundary condition for

x

O(x) = f u(C)d& + *(x1) (5.11)
x
I1

on the slit (reason why he switched to the "indirect" inverse approach in which successive analysis-type
calculations are made with regular updating Qf the airfoil shape through the irrotationality condition).
The additional conditions associated with the inverse problem are not mentioned in reference 32. Hence, it
seems likely that the failure was caused by not satisfying the necessary additional conditions, resulting
in a wrongly posed problem. 32

Both Steger and Klineberg
3
l and Langley stress that the crux of the design problem is the

treatment of the airfoil boundary conditions. I Langley's method the Neumann boundary condition is imple-
mented by substituting the given surface slope b for $, in the finite difference expression

( 2 ( -, - Az($,). (5.12)
zz ij = z) \j'i,j 1 i,j Du

for 0z at the (jth) mesh line coinciding with the slit (Fig. 7). The cross-derivative *xz = 7-i in the
expression (5.9) for the geometry update is approximated by

(* ). .f34,). + 4(f * .I (5.13)xx 1, 2Az X- i,j x i,j+l xi,j+2j

with ($~ replaced by the required velocity.
It should Be noted that the geometry update procedure, equation (5.13) in particular, implies continuity of
x in the z-direction, but not necessarily in the x-direction. The analysis calculation on the other hand

does imply continuity of *x because of the finite difference approximation for *xx. This numerical incon-
sistency could, presumably, have a negative effect on the convergence of the iteration process and, appar-
ently, shows up as a local oscillation in the resulting pressure distribution at the point x, where the
fixed leading edge geometry meets the remaining, new shape (Fig. 5.9).

It is further worth noting that Langley reports that substantial underrelaxation (0.1 to 0.3)
is required in updating the surface slopes through the irrotationality condition and that 150-300 fine grid
iterations, preceeded by a similar amount on two successive coarser grids, are required for convergence.

In a latter effort at ARA by Forsey and Carr briefly reported by Lock , the problem of not
being able to successfully enforce the Dirichlet-type boundary condition was apparently overcome. At the
same time the method was extended to 3-D wings. An example of application is given in figure 5.10.

Use of the "indirect" inverse technique (as well as failure of the "Dirichlet technique") has
also been mentioned by Schmidt et al.3

5 
and Schmidt and Hedman

36
. In the latter paper the closure problem

is crudely disposed off by rotating the lower surface around the airfoil section leading-edge point.

Inverse methods based on TSP formulation which do utilize Dirichlet boundary conditions (excet,
again, in the leading-edge region where a fixed shape is assumed), have been studied by Shankar et al."','a.
In [371, a non-conservative, transonic similarity form

[K -(y+)#]# x x + * = 0 (5.14)

of the 2-D Guderley-Von Karmen TSP equation is used. K being a transonic similarity parameter and I
representing a stretched coordinate. In the leading-edge region the Neumann boundary condition is imple-
mented as in Langley's method. This leads to the following difference equation being solved at the airfoil
grid points where the shape, i.e. *2 is prescribed

m~n, m .--m" mmmum u n m n mumi m
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+ = (5.15)

The non-linear term, as usual, is approximated by central differences at elliptic points and by upwind
differences in hyperbolic points. At the design-portion of the airfoil grid points, the Dirichlet boundary
condition is implemented as

0i'j = i-l,j + ui-j (I :,j - Xi-l,j (5.16)

ui_., j being the required velocity, specified at half-mesh. Equation (5.16) enforces continuity of * at
x = x1. The level of 4 in the design portion is updated during each relaxation sweep. After the relaxation
process has converged, the new airfoil slope is computed from the exact inverse of equation (5.15), i.e.

A [(K-(Y+1)Ox)x1..] + I (f (5.17)
( Y£ i,j = 2-- , A2 

-  
( i j 1 - 0i j )

( . )

In this way full consistency between the analysis and design formulations is achieved, thereby avoiding,
presumably, local oscillations at the analysis/design junction x1 of the kind observed in figure 5.9. As
mentioned earlier the finite difference procedure, and the difference formula for Oxx in particular,
implies continuity of 4-, at x1 on both upper and lover surfaces. It is suggested here, that these two,
implicit, additional conditions serve to fix the circulation and trailing edge openness and thereby the
uniqueness of the solution. As in the Steger and Klineberg

3
' and Langley

3 2 
procedures this does not leave

room for control over the trailing-edge thickness. However, it would seem possible to, additionally,
exercise control over trailing-edge closure by introducing the orientation of the fixed leading-edge
geometry with respect to the free stream as an additional free parameter.

A point worth mentioning is the statement in [37] that in case of an open trailing edge the
far field boundary condition to be satisfied at the outer edge of the finite computational domain should
incorporate the effect of a source term, the strength of which is related to the trailing edge gap. I.e.,
the far field boundary condition should read

r n (5.18)
Ofar field 21 2w (

rather than containing only the circulation (r) term. In equation (5.18) Q is the source strength which is
related to the trailing edge thickness. 6 and t are given by

o = arctan V (5.19)

and

= x2 
+ K2  

(5.20)

respectively.

Although the statement of Shankar et al. is correct in principle, at least for a mass-conserva-
tive formulation, it is not applied correctly in [37] because of the fact that a non-conservative finite
difference formulation is used. In case of embedded shock waves this leads to spurious mass sources at the $
shock (Section 2.2.3), which should be accounted for in the source strength Q.

In [38] Shankar et al. have extended their approach to 3-D wings in the presence of a body.
The approach was taken to modify the existing 3-D Bailey-Ballhaus TSP analysis code as extended by Mason
et al. 

9
. The 3-D code utilizes fully conservative differencing. The far field source term was not

included, however.
The 3-D design examples presented in (38] suffer severely from the absence of control over

trailing edge thickness." Several suggestions are given for, fairly crude, remedies for this situation,
such as rotating the lower surface about the leading edge. However, the possibility mentioned above, to
control closure through introduction of an additional free parameter which represents the orientation of
the fixed leaing edge geometry with respect to the free stream, is not considered.

In a further paper 
° 

Shankar, now considering Dirichlet boundary conditions over the whole of
the chord, addresses the closure problem by varying the constant of integration in equation (5.11), or, in
other words, by varying the potential at the leading edge. In particular he uses the following procedure:
(I) Compute the flow field for a given starting geometry with the purpose of providing a first estimate

for the potential *LE at the leading edge
(2) Compute the potential on the wing plane from (5.11), (with x, = xLE).
(3) Solve the Dirichlet problem for the difference equations by means of line relaxation.
(4) Determine the trailing edge gap tTE from equation (5.6) and the derivative atTE/BLE; determine correc-

tion ALE from

atTE
A$LE = TE/ (5.21) s

(5) Repeat steps (3) and (4) until closure is achieved.
Note that the determination of the n

2 
derivatives (atTW)J/(3.LE)m (n is the number of span

stations) is very costly since each requires another Dirichlet prolem to be solved. For this reason a
simplified procedure is used involving only a small fraction of the gradient matrix elements 3tTE/4aLE.

Although the procedure can be made to work, apparently, it also seems to be quite cumbersome.
Clearly, there is a need for more efficient procedures that enforce closure. %

5.3.3 Methods based on full potential theory

General

As mentioned previously inverse methods based on full potential theory with full boundary
conditions require iterative procedures with some form of linearization in the boundary conditions. One
possibility is to solve a sequence of Dirichlet boundary value problems with the geometry updated after
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each Dirichlet step (Fig. 5.11a). Another possibility is to utilize a residual-correction formulation in
which, in each iteration step, the residual, that is the difference between the actual and required
pressure distribution, is determined by means of an analysis (Neumann) code and a correction to the
geometry, driving the residual to zero, is obtained from some approximate inverse procedure (Fir. 5.11b).

Methods belonging to the first category are those of Tranen4
1
, Carlson4

2 
and Volpe for 2-D

airfoils and those of Henne and Shankar for 3-D wings. In the second category we have the methods of
DaviS4

5 
and McFadden

4 6 
for 2-D airfoils. The approach of the latter has also been extended to 3-D wings by

Garabedian and McFadden4
7
.

Two-dimensional flow
The first reported attempt to solve the full potential transonic lifting 2-D inverse airfoil

problem is that of Tranen 
4 1

. Broadly speaking Tranen's method can be considered as a version of the
Garabedian-Korn 4'

9 
analysis method with the Neumann boundary condition on the airfoil surface replaced by

a Dirichlet boundary condition. In the Garabedian-Korn method (see also Section 3.2) the quasi-linear form
of the full potential equation is solved in polar coordinates w,r in a computational plane obtained by
mapping the region exterior to the airfoil onto the interior of a unit circle. Non-conservative differencing
with simple upwind bias in the supersonic zone is used and the resulting non-linear system of equations is
solved by means of SLOB.

The distribution of the surface potential required for the Pirichlet boundary condition in
Tranen's method is obtained by integration of the target velocity distribution, i.e.

s

0 = O(s = 0) + f q(s')ds' (5.22a)
s=0

Note that since,

q2 = U
2
+V

2  
(5.22b)

this way of linearization requires that the normal velocity V resulting from the solution of the Dirichlet
problem be small with respect to U (and q), or, in the other words, that the estimate of the geometry is
close to the required one.

While in the original analysis method the velocity components are calculated by means of
central differences at the mesh points themselves, Tranen, in specifying the surface potential in the
Dirichlet problem, found it necessary to specify the pressure (velocity) at half-mesh and determine (P
through integration, using an expression of the type

i 
=  

+ (Uf)i-j Aw (5.23)

f being the mapping modulus. (Note that a similar strategy was followed by Shankar
3
e, see Section 5.3.2.)

In Tranen's method the constant of integration determining the level of the surface potential can either
be fixed or can be used to control closure. In the latter case a correction 

6
0o to the surface potential

level is applied after each relaxation sweep. The magnitude of this correction is taken to be proportional
to the net mass flux Q (transpiration) through the airfoil surface, i.e.

600 = eQ (5.24)

with

Smax
Q= f pV ds (5.25)

0

where V is the velocity component normal to the surface (radial direction). The value of the proportional-
ity constant a has been determined empirically. However, utilizing the fact that the potential of a source
(in incompressible flow) equals Q ln f (P being the distance to the source in the physical plane) it should
also be possible to determine c theoretically.

Tranen's way to control closure is probably more efficient than that of Shankar
4 

, described
in the preceding section; the reason being that Tranen's procedure does not require the numerical determi-
nation, through additional Dirichlet problems, of the derivative atTE/OLE prior to update of the potential
but corrects the potential after each relaxation sweep.

While there is some doubt 
2 

whether the Dirichlet problem in Tranen's method, in particular
because of the far-field boundary condition used, is well-posed*) the inverse problem as a whole in
Tranen's method is certainly not formulated correctly. The latter is a result of the fact that Tranen, as
pointed out by Volpe and Melnik

28
, does not satisfy Lighthill's

26 
first constraint or an equivalent addi- -

tional condition. Requiring the net transpiration mass flux to be zero is a necessary but not sufficient
condition for proper closure. In addition, in order to obtain a proper stream surface, we must require the
solution to contain a branch point or dividing streamline. This, in general, requires a stagnation point.
In other words, the additional condition that the normal velocity V = 0 where U is specified to be zero

I (or an equivalent of this) must be imposed. The implication of this last requirement is that a free param-
eter such as the magnitude of the free stream

28 
or a free parameter in the target pressure distribution

must be introduced. The fact that Tranen's method is not quite correctly formulated is reflected in the 4
way the new airfoil shape is determined. The latter problem requires two steps:
i. determination of the normal velocity V from the Dirichlet solution

ii. determination of the displacement of the stagnation streamline (integration of new surface slopes).
In determininq the normal velocity V at the surface mesh points from the Dirichlet solution

Tranen utilizes the usual central difference expression

Vi j=l z fi,'. ['i,2 - Oi,o] (5.26)

with the potential at the dummy point (i,O), inside the airfoil (outside the unit circle in the computa-
tional plane) determined by satisfying the difference form of the flow equations in the surface mesh
points. As described in the preceding section a similar procedure was adopted by Shankar" for the TSP

') The critique of Volpe and Melnik
2e 

in this respect, to some extent, is shared by the present author.
I



equation. Although, as discussed earlier, such a procedure, 
to some extent, achieves consistency between

the analysis and design formulations, an inconsistency seems to be that the prescribed tangential velocity
is considered at half-mesh and the normal velocity at the mesh points themselves. Such inconsistency could,
presumably, be avoided if a finite volume type of discretization were used to satisfy the full potential
mass conservation equation.

The fact that Tranen does not enforce proper branching of the surface streamline is reflected
in particular in the procedure for the determination of the '*placement of the "stagnation streamline".
The displacement 6 of the new surface, relative and normal to the old shape is determined by quadrature
using the mass conservation expression

1 r [ .Vi + P i-IVi-1
6i - Ui-1Ui-6i- + 2 -As.

U-, Vi etc. are determined by means of central differences of the type (5.26). However, at the trailing
edge V is set equal to zero by extrapolation from upstream grid points. At the same time some smoothing
procedure is required at the grid points nearest to he "stagnation point" (i.e. the point where U, but not
necessarily V, is equal to zero) where the integration is started.

As a result of the improper formulation of the inverse problem and the necessarily required
adjustments to the surface displacement Tranen requires a direct (= analysis: calculation to check the
resulting pressure distribution. A flow chart of the complete design procedure is reproduced in figure
Note that the procedure exhibits aspects of a residual-correction type of formulation.

Convergence is considered to be obtained when the pressure distribution output by the analysis
program is sufficiently close to the prescribed pressure distribution from the previous inverse case.
Although convergence in the proper mathematical sense is not guaranteed in Tranen's procedure, examples
such as reproduced in figure 5.13 suggest that engineering requirements can be met in two or three inverse
- direct iterations. Finally, it is worth mentioning that an approach similar to Tranen's was followed by
Volpe

s
o in an attempt to solve the inverse problem for two-element airfoil systems.

As mentioned before, a more fundamental (but not necessarily more practical) approach to the
2-D inverse problem for the full potential equation has been taken by Volpe and Melnik 

2
. 'he fundamental

difference with Tranen's procedure is that Volpe and Melnik satisfy the compressible analogue of
Lighthill's first constraint; their solutions represent proper stream surfaces. They do so by allowing - e
magnitude q. of the free stream to vary in such a way that, in Tranen's terminology, V = 0 where U is
specified to be zero. In this way they succeed in solving the "pure" inverse problem by a sequence of
Dirichlet problems with no need, at any stage, for a direct solution over the current airfoil contour.
However, they do not control closure in the sense that a given trailing edge thickness is designed for.

The formulation and solution of the Dirichlet problem in Volpe's method differs from Tranen's
in a number of technical but not insignificant details. The most important of these are:
- the "circle plane" finite difference technique is based on Jameson's

s
'
,
" (non-conservative) rotated

difference scheme and mapping procedure rather than those of the Garabedian-Korn method"O
- the constant of integration fixing the surface potential is chosen arbitrarily but a source term a in r

is subtracted from the potential. The source term is also represented in the far-field boundary condition
and allows for a net mass flow through the boundary as well a, for mass generation at shock waves intro-
duced by the non-conservative differencing.

- After each relaxation sweep both the free stream velocity q and toe source term a are corrected in
order to enforce V = 0 at the leading edge stagnation point and at the trailing edge. Hence there is no
room for control of closure and whatever trailing edge gap results from the computation is accepted.

- After each Dirichlet problem the perturbation slope

-iV
Ui,j=166.ij~ = tan U(5.28:

is used to determine the corrections to the mapping modulus that will drive the approximate airfoil
surface to become a streamline. Upon convergence the inverse mapping from the unit circle to the con-
verged airfoil shape is carried out using the known mapping modulus and airfoil slopes.

A point of concern with respect to Volpe's method is that substantial underrelaxation must be
applied to the changes in airfoil shape in order to ensure convergence of the design process. In spite of
this the number of Dirichlet cycles required for convergence is fairly large, being of the order of 15.
This should be compared with the 2 to 3 cycles, which, apparently are required in Tranen's approach. We
will return to this point shortly.

A remark must be made first with respect to the treatment of the trailing edge. It is recalled
that the target surface pressures (velocities) are specified at half-mesh and the circulation fixed by
integration. At the same time, after satisfying the difference equations, the velocity components are
calculated at the mesh points themselves by means of central differences. As a result, U at the trailing
edge is not necessarily zero. Hence there is no complete consistency with the direct solution where the

4 circulation is fixed by requiring U to be zero at the trailing edge. In the inverse method a small correc-
tion to the circulation of O(h

2
), h being the mesh width, will in general be sufficient to drive U exactly

to zero at the trailing edge.
Having noticed that in general, U * 0 at the trailing edge one may conclude that 6e (equation

(5.28)) will also in general remain bounded. Hence the question arises whether the source term a should be
used to drive V * 0 at the trailing edge. An interesting alternative would seem to be to use a for control
over the trailing edge gap instead. Some control, if necessary at all, over the boundedness of 66 at the
trailing edge could be exercised through a (small) correction of O(h

2
) to the circulation. There is

reason to believe that the use of the source term a to control closure might also improve the convergence
characteristics. The reason is that the value of a is completely determined by the total inteqrated net
mass flux through the surface and depends only very weakly on the normal velocity in one particular (the
trailing edge) point.

A distinctly different approach to transonic flow computations (both analysis and design) has
been taken by Carlson" 

2 . 
Instead of using a body conforming finite difference mesh in the circle plane,

Carlson uses (stretched) Cartesian coordinates in the physical plane. As a consequence special complicated
difference formulae must be used to satisfy the airfoil boundary conditions in both the analysis and
design mode.

t
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From the design point of view Carlson's method, while based on full potential theory
(non-conservative), is very similar to the small perturbation formulation of Shankar 

3
. In both methods a

mixed boundary value problem is solved with the leading edge shape or a greater portion of the airfoil
fixed and the pressure prescribed over the remaining portion (x/c > .06). As in Shankar's method the orien-
tation of the given leading edge shape with respect to the free stream is fixed and there is no actual
control over airfoil closure. Closure can be obtained only by adopting a sharper or blunter nose shape.

From the numerical point of view the analysis and design formulations of Carlson are not com-
pletely equivalent. As a result there is no perfect agreement between direct and inverse calculations.

A further point worth mentioning is that, rather than determining the new geometry after con-
vergence of the mixed boundary value problem, the geometry is updated after every ten relaxation sweeps.
In combination with successive grid refinement Carlson found this to be the most economic procedure.

A simple, but apparently effective residual-correction type of approach towards the inverse
airfoil problem has been described by Davis

4 5
. In this method the FL06 analysis code

5 2
'
1, 

is utilized to
determine the actual pressure distribution for the latest geometry. The residual 

6
Cp is the driver for a

simple, perturbation type of surface modification (inverse) routine. For the latter Davis has taken
transonic wavy-wall formulae. These relate the required change in pressure to a change in surface curvature
when the local Mach number is <1 and to a change in surface slope when Mlo c > 1. The perturbation slopes and
curvatures are then integrated to yield ordinate modifications.

Due to the local perturbation character of the wavy-wall formula the method can be used only
for local modifications to the pressure distribution of an existing airfoil. Reference 45 presents results
for upper surface contour modifications only, with no control over the trailing edge gap. About 20 itera-
tive cycles are needed for convergence.

While, from the design point of view, the possibilities of Davis' method are limited to local
modifications, an advantage of his approach is that only modest development efforts are needed to obtain a
working code; the reason being that the (complicated) analysis code is retained in its original form and
only the (simple) geometry correction package must be developed.

Another possibility for solving the inverse problem through the use of an analysis method,
has been studied by McFadden"

6
. In [46] a modified version of the Bauer-Garabedian-Korn-Jameson (BGKJ)

circle plane relaxation program" with non-conservative rotated difference scheme, and a functional rela-
tionship involving the mapping and the velocity distribution along the airfoil surface in the physical and
computational planes are used in an iterative sequence. In each iteration a functional relationship of the
type

- 1n0( -- n) (w,r (5.29)

is used to obtain a better approximation to the mapping function of the required airfoil. In (5.29) s is
the arc length along the airfoil and w the angular coordinate in the circle plane; the mapping is essen-
tially determined by e. q (s) is the required velocity distribution and *n is the potential on the air-
foil surface as obtained from the preceding BGKJ relaxation solution.

Note that, upon convergence, equation (5.29) leads to the identity

q(s) = !I = !- (w,r = I). dw (5.30)
as aw ds

Note also that the procedure bears some resemblance to the "indirect" inverse TSP formulations discussed
in Section 5.3.2. In the latter, the irrotationality condition (5.8) plays the same role as equations
(5.29)/(5.30) in McFadden's approach.

Further noteworthy features of McFadden's method are that
- the (iterative) relaxation process and the outer iterations for the geometry are intermingled.
- on fine meshes an additional artificial viscosity term that suppresses the formation of shock waves is
required for convergence (which takes 200-700 relaxation cycles). As discussed in [46] the undesirable
effects of this limitation can be overcome largely by a suitable design strategy.

- in order to avoid singular bqhaviour of (5.29) at the stagnation point (q = 0) a special treatment,
implying modification of *(n), is incorporated.

- while the analysis routine requires M and q. to be given (the latter is set equal to unity) the critical
velocity c* must be chosen in the design program. M is determined from the isentropic relation

_~2~ = 3+ ( M2(5.31)

- instead of setting q equal to unity, the free stream velocity, as in Volpe's
2e 

method, comes out as a
result of the design calculations. However, rather than using q to eliminate the stagnation point
singularity, q_, in McFadden's approach, is used to minimize the functional

21 [(,In))2 (s) (532)
. 0

While a motive for this particular choice is not given, the result seems to be that the overall thickness
of the new airfoil is approximately the same as that of the starting airfoil.

- there is no control over closure. The trailing edge gap must be accepted as it is or must be manipulated
through changes in the target pressure distribution. An alternative possibility would seem to be to use
q to control the trailing edge gap rather than to minimize (5.32).

An example of application of McFadden's method has been reproduced in figure 5.14. The example
is interesting in that it illustrates the fact that a smooth surface pressure distribution does not neces-
sarily lead to a shock-free flow or even a flow with low wave drag; the shape of the sonic line as well as
the figure for wave drag (40 counts) indicate the presence of a shock wave in the flow field that weakens
and vanishes as it approaches the airfoil. Note that reference 46 contains several useful guidelines for
the choice of "target" pressure distributions in relation to low wave drag.

----. -r
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Three-dimensional flow
As mentioned earlier the question of well-posedness of the inverse problem in three dimensions

does not seem to have been addressed properly even for incompressible flow. One aspect is that the 3-D
equivalents of Lighthill's

26 
constraints have not been formulated. Apart from this there are strong indica-

tions that the 3-D inverse problem is ill-posed, [1], [53), in the sense that small differences in speci-
fied pressure distribution may lead to large differences in geometry.

Other aspects of the 3-D inverse problem, in particular when formulated in terms of a sequenc.
of Dirichlet problems with geometry corrections based on calculated normal velocity distributions, are the
following:
The conversion of specified pressure or velocity distribution into specified velocity potential is funda-
mentally more complicated than in 2-D flow. Assuming the normal velocity to be sufficiently small the
conversion is described by the equation

V + 2 = q
2

(&,n) (5.33)E n
&, n being orthogonal curvi-linear coordinates on the (approximation to the) wing surface. The problem of
finding 0 is similar to one in three-dimensional boundary layer computations

s
4 in which the boundary condi-

tions at the edge of the boundary layer require the knowledge of the velocity components of the outer
inviscid flow while only the pressure distribution is given. It leads to an initial value problem with
either the potential or both velocity components at the leading edge given as initial conditions. Because
of the hyperbolic nature of this initial value problem, the characteristics of which are the streamlines,
the solution may contain discontinuities manifesting themselves in e.g. "intersecting streamlines", unless
the prescribed pressure distribution and/or the initial conditions satisfy additional requirements. Clearly
such discontinuities are not acceptable in the inverse problem*). However, it is not quite clear how they
should be avoided. Presumably one should either avoid to linearize the full non-linear problem in such a
way that the solution of initial value problems is required at intermediate steps or one should choose the
initial conditions (0 or direction of q at the leading edge) such that discontinuities are avoided.

The problem of correcting the geometry when the normal velocity (W) is known from the solution
of the Dirichlet problem is closely related to the problem of computing the displacement thickness of a
3-D boundary layer. It follows from the discussion by Lighthill

5
" that, assuming the displacement 6 to be

small, 6 is determined by a quasi-linear first order equation of the type

a (pUf + -a (pV6h ) = pW h h (5.34)TZ n an 7
In (5.34) E, n are orthogonal curvilinear coordinates and hE, hl metric coefficients. Note that the stream-
lines are also the characteristics of (5.34). Hence the remarks given above with respect to the determina-
tion of 0 from (5.33) are also relevant for the determination of 6 from (5.34).

Questions like those mentioned above are either ignored or circumvented in the few 3-D
transonic (as well as subsonic) inverse methods that can be found in the literature. This is, for instance,
the case with the method described by Henne

3
.
, 
Henne's method can be considered as the 3-D equivalent of

Tranen's approach for 2-D. The Jameson-Caughey FL022 code (Section 3.3.2) has been modified to accept
Dirichlet boundary conditions. Figure 5.15 presents a simplified scheme of the procedure. The point is
stressed in (43] that the scheme requires the assumption of small changes. While the surface value for the
potential in the Dirichlet problem is obtained by "streamwise integration of the velocity at constant span
stations" the problem of determining the velocity components is not mentioned. Details about the determi-
nation of the surface displacement from the normal velocities are not given either. Nor is mention made
of any additional conditions enforcing proper branching of the stream surface. On the other hand, the
spanwise variation of the surface potential is reported to be used as a parameter for trailing edge
closure control.

As in Tranen's
4
1 case direct analysis computations are required to check whether the design

goal has been achieved. Similarly it is doubtful whether the scheme will converge in the proper mathematical
sense. However, the examples of application presented in [43], one of which is reproduced in figure 5.16,
indicate that convergence in an engineering sense can be obtained in 2 to 6 inverse cycles.

A somewhat unusual scheme for linearizing the non-linear boundary conditions of the inverse
problem to a Dirichlet-type boundary condition is utilized by Shankar 44 in an attempt to modify the FL030
finite volume analysis code (Section 3.3.2) into a design code. Starting out from the analysis solution
for a suitable estimate of the required geometry Shankar applies a correction to the surface value of the
potential in each relaxation sweep. This correction is determined from the isentropic relation for the
density

= - X 2 M(q 2-)] y-1 (5.35) '

I This is linearized to read

dp = -p2-yM.2.Iql.dlq (5.36)

or

(n 1)-,(n) = p3-y2I (n)( q(n1)q(n)) (5.37

Utilizing the isentropie relation

p= C X , (5.38)

equation (5.37) can, in general curvilinear coordinates, be rewritten as

') In the boundary layer case the discontinuity may be indicative for a separation line, with the discon-
tinuity representing the "footprint" of the associated vortex sheet in the outer inviscid flow.
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( n ( )( n ) _ { C p t Y M .2 } ( 5. 3 9 )
In (5.39) U and V are the contravariant surface velocity components. C Pt is the "target" C -distribution.
Equation (5.39), in discretized form, is solved for the correction 60' to the surface potential.

The procedure just described is related but not identical to one in which the direction of 'he
surface velocity is kept fixed but the magnitude updated. Note that in the latter approach, provided a
converged analysis solution is taken as the starting point, the problem of discontinuities in the surface
streamline pattern would be avoided.

Using the contravariant velocity component W, computed at half a mesh from the wing surface,
the geometry is corrected, without control over closure, after each relaxation sweep. The author of [44]

is not very clear, however, on the precise procedure and communicates the opinion that a better procedure
to update the wing ordinates, including control over closure should be included.

A residual correction type of formulation that can be considered as a generalization to 3
dimensions of McFaddenS4 approach, is briefly described by Garabedian and McFadden in [47]. The method
utilizes a modified version of the FL022 analysis code in combination with some functional relationship
between geometry correction and pressure re sidual. The functional relationship is in the form of a partial
differential equation that is solved along with the partial differential equation for the velocity poten-
tial. However, the paper is not very clear on the precise form and the motives for the particular choice.

In order "to avoid questions of closure and other complications with the geometry" the pressure,
in [47], is assigned only over the part of the geometry that lies outside a given starting geometry. As a
result the wing surface is modified only where the local speed is sufficiently large. There, the method
may be used e.g., to reduce the strength of shock waves in areas with supercritical flow. Note that this
capability is somewhat similar to that of the fictitious gas method described in Section 5.2.2.

Concluding the discussion on 3-D full potential transonic inverse methods, it would seem that
we have only just begun to tackle the problem. Considerable efforts will be required before we will arrive
at well founded, reliable engineering tools of practical significance.

5.4 Design by means of numerical optimization

In this section we will discuss design procedures involving the use of aerodynamic analysis
methods in corbination with a numerical optimization algorithm. While applications have seen the use of
various aerodynamic codes, only one single feasible directions/gradient optimization algorithm, developed
by Vanderplaats

56
, seems to be used almost exclusively.

The approach is lfirly recent (1974s, Hicks et al.
57
), owing its existence entirely to the

availability of large and fast computer systems. Because of the excessively large computational requirements,
at least in 3-D, the approach is sometimes referred to as "design by brute force". Nevertheless it holds
great potential for the future. A reappraisal of the technique has been given recently by ,'icks ".

A generalized flow diagram of the design - by - numerical - optimization techniqu' is presented
in figure 5.17. Inherent to the numerical optimization approach are the choice of an aerodynamc object
function F that is to be minimized, a number of quantities to be constrained Gj and the choice of a set of
design variables. The object function can be the drag or any other suitable aerodynamic quantity. The con-
straints can be of aerodynamic or geometric nature; e.g. CL and/or t/c greater than a specified value. The
design variables are taken to be the coefficients Ai of a number of shape functions

n
Z =Z + A..f. (5.42)

describing (modifications to) the starting wing geometry.
The process begins by perturbing, in sequence, each of the shape function coefficients Ai. The

resulting n shapes are analyzed by means of the aerodynamic progrn (determination of F and Gj's) and the
a G. AF _j aedtrie.Tenx tpi hderivatives TV, or rather the difference quotients ~ d.aedtrie.Tenx tpi h

formation, by 'the I optimization program, of the gradient*' ' VF and the determination of the
direction of steepest descent of F, in the n-dimensional space formed by the basis vectors A1 , while satis-
fying the constraints. The optimization program then executes a number (typically 3) of steps in this
direction, with another aerodynamic analysis performed at each step, until either a constraint is met or F
attains a minimum. In the first case, or when the minimum of F is lower than the previous minimum, the
process is repeated; new gradients are determined, etc.. When the latest minimum of F is equal to or higher
than the previous one the process is terminated.

The optimization process described above requires typically 10 complete cycles or, in other
words, 10(n+3) analysis calculations, (591. This immediately illustrates the weakest point of the numerical

41 optimization approach. In order to keep the computational effort required within reasonable bounds one has
to put severe limitations on the number n of design variables, in particular in 3-D flow. The problem is
enhanced by the fact that for acceptable convergence of the optimization process it is necessary to avoid
"numerical noise" in the partial derivatives of the object function, [61], [62]. This requires that the
relaxation process in each analysis calculation must be continued until the residual has reached a level
beyond that which is often customary in "normal" analysis calculations. It also appears to exclude the use
of analysis codes with simple boundary layer corrections, [58].

One way to reduce the number of analysis calculations required in 3-D applications is to evolve
the design variables in a series of steps, [64s]. For example, by first designing the upper surface, section
by section, going from root to tip and then the lower surface. Clearly it is also very important to select a
starting geometry having aerodynamic characteristics which are already close to the target. This asks for
an information systems/data base approach. With previous experience stored in the data base, the latter can
be searched for the most suitable starting solution. As described in (59] the data base approach can also
be used to speed-up the convergence of numerical optimization by at least a factor two. With the results Of
all preceding geometry perturbations stored it is possible to construct higher partial derivatives of the
object function and utilize higher order gradient methods.

With the severe limitations on n, the choice of the shape functions is of utmost importance.
* The choice should be directed towards describing a sufficiently wide class of practical solutions. While
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simple polynomial expressions were used in early applications [57], [6o], of the numerical optimization
concept, a more sophisticated class of shape functions describing more local geometry modifications was
used in later applications, [61], [62], (63]. However, as discussed in [64], there is a need for still
better shape functions with even more localized curvature variations. In fact it can be argued, following
arguments similar to those used by Dav is4 in selecting the geometry correction formulae in his residual-
correction ty-pe of inverse method, that while curvature based shape functions are suitable for areas with
subcritical. flow, slope based shape functions might be more appropriate in areas with locally supersonic
flow. In general it can be stated that the design variables must be chosen carefully for each individual
optimization problem. Not in the least because the choice also affects the convergence of the optimization
progress, (59].

While the choice of the design variables is of great practical significance, the choice of the
object function, in conjunction with the choice of the aerodynamic and geometric constraints, is of more
fundamental interest. In two-dimensional transonic applications, [57], [59], [6o], (61], [65] it has been
customary to select the wave drag as the quantity to be minimized, subject to constraints on, e.g., airfoil
thickness or volume, lift and/or pitching moment. Although it is clear that constraints are necessary in a
meaningful drag minimization problem it is by no means clear how exactly the problem should be formulated
in order to guarantee a unique solution. The problem is illustrated by figure 5.18, taken from [59]. Shown
are the results of two drag minimization runs with identical free stream conditions and identical con-
straints on lift and airfoil volume. Only the starting solutions differ. As illustrated by the figure the
two resulting airfoils are totally different in shape. Clearly the problem, as formulated, has more than
one, local minimum and neither of the two necessarily represents the absolute minimum.

Figure 5.18, the airfoil on the right in particular, also illustrates another problem of
direct (inviscid) wave drag minimization: In the absence of (direct) control over the pressure distribu-
tion the solution may acquire unrealistically high pressure gradients, such as near the upper surface
trailing edge.

A strong point of the numerical optimization approach is the possibility of selecting object
functions and constraints suitable for multi-point designs. An example of a two-point design problem
directed towards the design of airfoils with low drag creep can be found in [61]. It is also entirely
possible to consider, e.g. transonic drag minimization and low-speed stall requirements simultaneously.

While the direct minimization of (inviscid) wave drag is feasible in two dimensions, it is not,
at present, in the case of three-dimensional wings. Several unsuccessful attempts in this direction can be
found in the literature, [62], [63], (64]. The main reason for this failure is the lack of accuracy in the
determination of the pressure drag with the currently available 3-D codes and the limited number of mesh
points (Section 2.3). Another problem would seem to be that the problem of uniqueness in three dimensions
is even more severe than in two dimensions. The accuracy problem might be overcome when more efficient
algorithms (Chapter 6) and/or more computer power (vector machines) allow the number of mesh points to be
increased. The uniqueness problem would probably require the introduction of more constraints or more
sophisticated object functions.

Because of the difficulties just mentioned most 3-D applications [63], [64], of design-through-
numerical-optimization have seen the use of the pressure distribution type of object function

F C X(-C )(5.43)
iO (
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P target

* When used in this mode, design-by-numerical-optimization is an extremely expensive substitute for the
* inverse approach described in the preceding section. while the latter is absolutely feasible on currently

available general main frame computers, the former, requiring an order of magnitude more computer time, is
absolutely not, at least in an industrial environment. -on the other hand, inverse design through numerical
optimization does have the advantage that direct control over the geometry can be excercised through the
application of constraints. The latter possibility is absent in the case of the inverse methods discussed
in Section 5.3.

Summarizing the discussion on design by numerical optimization, it may be said that the poten-
* tial possibilities of the approach are enormous with, at present, unique capabilities such as multi-point

and constrained design. However, the approach is also unique in terms of required computer resources.
Substantial improvements in both flow optimization code algorithms and/or computer efficiency, relative to
current general standards, are required before numerical optimization in 3-D wing design can be used on a
routine basis. 

4

5.5 Concludingreak

Having discussed the possibilities and limitations of several approaches in aerodynamic design,
the question may be raised which, if any, of the various techniques is to be preferred. As usual with such

4 questions a general and definitive answer cannot be given. The answer will depend on the particular circum-
iN stances that apply and will vary from case to case.

If a choice between the various possibilities is to be made table 5.1 may be of some help. The
table illustrates the point mentioned before that if a general design method for complete wings is required 4
neither the fictitious gas method nor the local residual-correction type of inverse approach are adequate.
In this author's opinion an inverse approach allowing global wing design as well as ''ical design modifica-
tions is, at present, the best compromise, numerical optimization being too expensive.

The most serious limitation of the current inverse methods is that no direct control can be
* exercised over the geometry. Efforts should be directed towards developing transonic inverse codes which do

have this capability. (A subsonic inverse code having this capability is described in (30].)
Another problem with inverse methods is that the specification of the target pressure distribu-

*tion puts a heavy burden on the aerodynamicist; the target pressure distribution must be chosen such that I -.
boundary layer separation is avoided and that drag is minimized while obtaining an acceptable geometry.
That this, e.g. in relation to wave drag, is not at all a trivial problem has been illttrated by figure
5.14, showing that a suitably looking shock-free surface pressure distribution may not be suitable for the

- minimization of wave drag. Another example of this kind is presented in figure 5.19 which was taken from
(47]. The figure on the right presents the result of an inverse (McFadden's) method; the resulting airfoil
carries a wave drag of 38 counts. The figure on the left, on the other hand, presents the nearest shock-
free solution (zero wave drag) as obtained with the hodograph method of (14]. Note that the la' ter result
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could also be obtained by means of the fictitious gas method.

It is conjectured that most if not all of the limitations of the (pure) inverse method could be
avoided through an approach which we will call inverse numerical optimization. In this conjectural scheme
(Fig. 5.20) the design variables are parameters describing the pressure distribution rather than the
geometry. The optimization algorithm is used to optimize a target pressure distribution, e.g. with the
objective to minimize the drag. Using the latest available estimate of the geometry this can be done rela-
tively cheap through an induced drag routine (Trefftz plane) a boundary layer code and a pressure drag
routine. With the target C.-distribution established the new geometry can be determined by means of an
inverse code. The process is repeated when the new geometry differs significantly from the previous one or
when a geometry constraint is met. In the latter case (new) constraints will have to be imposed on the
values of the parameters describing the pressure distribution. Information from all the previous iterations
can be used to determine these new values.

It is the author's opinion that an approach of the type sketched above, is worthy of further
investigation, in particular when embedded in an information systems/data base approach, (65].
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6. ADVANCED CONCEPTS

In the last half decade, new concepts have been developed that have advanced the discipline of
computational transonic aerodynamics (CTA) at a remarkable rate. These concepts include new methods for
discretizing the governing flow-field equations, accelerated iterative solution procedures, and improved
grid generation techniques. These advances, coupled with The anticipated availability of new large-scale
scientific computers, indicate the potential for significant near-term improvements in the usefulness of
transonic flow-field simulations in aircraft design. Some of the more significant of these advanced
concepts are reviewed here. Additional survey papers with emphasis on advanced concepts are given by
Kordulla [I] and Baker (2].

6.1 Algorithm development

The two primary aspects associated with CTA algorithm development include spatial discretiza-
tion schemes and iteration schemes. The spatial discretization scheme controls the order of accuracy of
the steady-state solution. Furthermore, properly matching the mixed character of transonic flow with type-
dependent discretizations, controls to a large extent algorithm reliability. On the other hand, the
iteration scheme controls the rate of convergence, and therefore, is primarily associated with the
algorithm execution speed and cost. Other algorithm aspects of importance associated with both the spatial
discretization and the iteration scheme include coding ease, storage requirements, algorithm generality,
and ease of boundary condition implementation. The discussion begins with a review of advanced spatial
discretization schemes.

6.1.1 Spatial discretization schemes

Much of the recent work in transonic potential methods has been devoted to finding better ways
of solving the full potential equation in conservation form. Two types of spatial discretizations can be
considered at the present time for the numerical solution of this equation; (i) finite-difference
schemes and (2) finite-element schemes. The finite-difference schemes have been more widely used than
schemes of the finite-element variety, and therefore, will be treated in more detail. Recently, however,
the finite-element discretization has been receiving more attention, especially in Europe. Specific dis-
cussion comparing various aspects of finite-difference and finite-element techniques will not be presented.
For discussion on this topic the interested reader is referred to Hafez, et al. [3,4].

The most interesting aspect of transonic spatial discretization procedures is the manner in
which numerical stability is maintained in supersonic regions of flow. This stabilization process is
usually achieved by the addition of an artificial viscosity term which biases the discretization scheme in
the upwind direction and usually lowers the order of accuracy. This yields a discretization scheme in
which the computational domain of dependence correctly models the physical domain of dependence. Addition
of the artificial viscosity term is also the mechanism for eliminating expansion shock waves as part of
the solution.

Since t:.e initial work making transonic flow calculations feasible (see chapter 3 for a brief
review of this work), new approaches have been developed. The first conservative full potential calcula-
tions were presented by Jameson [5] in 1975 for airfoil geometries and by Jameson and Caughey [6] and
Caughey and Jameson [7] in 1977 for wing and wing/fuselage geometries. An example of this type of discre-
tization applied to the conservative full potential equation (see Eq. (2.19)) is given by

LO$.- iji~= ( xP iqi,j 6x~ y i~~ Y) ij (6.1)

where L is the residual operator. For convenience of presentation, only two-dimensional Cartesian coordi-
nates are considered. The density at mesh interval midpoints, for example pi+j' is evaluated using

x i+ 
6

x ij (6.2a)

1+E+1
- x- 6 yi,j  (6.2b)

and a suitable expression for the density in terms of *x and *y (for example, see equation (2.20)). The i
and j subscripts indicate position in the finite-difference mesh, that is, x = iAx, and y = jAy. The
operators used in equations (6.1)-(6.2) as well as throughout this chapter are defined by

Backward first difference (first-order accurate)

6 ) . i - .3 .' (6.3a)
x i,3 Ax

Forward first difference (first-order accurate)

( )i+ .j - ( )1.0
S , Ax(6.3b)

Central first difference (second-order accurate)

6x( ). .=
x )j+26 (6. 3c)X , 2Ax

Central second difference (second-order accurate)

),( )i j
-2 ( 

)3i i
( 
)i-lj (6.3)6xx( i (Ax),



Shift operator

E ±1
(  
)i 

=  
( )i±1,j (6.3e)

Additional operators involving other coordinate directions are defined similarly.
Note that the symmetric combination of first-order-accurate difference operators yields a

second-order-accurate, central difference operator (for example, tx6x = 6x6x = 6,x. Thus, the differencing
procedure given by equations (6.1)-(6.2) is centrally differenced and second-order accurate. As such, it
is stable for subsonic flow regions but unstable for supersonic regions of flew.

Jameson (5] stabilized this differencing procedure for transonic calculations by adding the
following artificial viscosity term to equation (6.1):

-Ax(vxPx)x - Ay(v y y)y (6.4)

where v is a switching or transition function defined by

v = max[O,(1-1/M
2
)] (6.5)

and M is the local Mach number. The "max" notation used here causes v to take the maximum value between
zero and I-I/M. This artificial viscosity term is differenced with an upwind bias as follows
(for Ox > O, *y > 0):

-AxA Iv. 4 ~o- 6 p + ) - dyd lv.o 4i~ 6 p ) (6.6a)

and if x 
< 
0 , *y > 0

-Ax(vi+1 $,j i+ j  
p
i+i,j) - Ay6y(vi, jy. yP i j+3) (6.6b)

Similar formulas are required for 4y < 0. For convenience of presentation, only the first case will be
considered hereafter.

Inclusion of the artificial viscosity terms defined by expressions (6.6) does not alter the
second-order-accurate central differencing of subsonic regions because for M < 1, v = 0. In supersonic
regions, the differencing is first-order accurate and upwind biased resulting from the addition of
artificial viscosity. As the flow becomes increasingly supersonic, the scheme is increasingly retarded in
the upwind direction. (Note: Jameson presented a second-order-accurate supersonic spatial differencing
scheme in reference 5, which will be discussed subsequently.)

The spatial differencing scheme given by the addition of artificial viscosity to equation (6.1)
can be rearranged to give (see Ref. 8)

LO. .j 160. +6 6 1$ .j )i (6.7)

where

Pi (1-vi,1j)Pi +, + vi,jPi-,j (6.8a)

and

Pj= (i-vij)1i,j+i + Vi,ji,ji (6.8b)

Thus, addition of the upwind-biased artificial viscosity term to the original centrally differenced
finite-difference scheme is essentially equivalent to retarding the evaluation of the density in the
upwind direction.

This scheme can be generalized to arbitrary coordinates (9] and to three dimensions [10].
For instance, the spatial differencing scheme for the two-dimensional, full potential equation written in
nonorthogonal curvilinear coordinates is given by (9]

6L(Ou) + 6 V (69)

i j i+j,j J i,j*j

where the contravariant velocity components in the & and n directions, U and V, are evaluated using
standard second-order-accurate finite-difference formulas. The density coefficients are upwind evaluationsV
of the density and are given by

=i+aj = ((1-v)p
) i + j 

+ vi+,jPi+r+.,j (6.10a)

pi,j+i m ((-)P)i,j+i 
+ 
vi,j+jPi,j+s+j (6.10b)

The r and s indices control the upwind directions and are defined by

r 1 when U (i~i~j(6.11)
s = +1 when Vij <0

The reliability of this generalized spatial differencing scheme is improved somewhat,
especially for strong shock calculations, if the switching parameter definition is changed to

max[0,(M ,-1)C] for U > 0
V. = I ui+,j (6.12) 'max[o,(t -I)c] for Ui 0

i+3,j

where the original v of equation (6.5) has been multiplied by CM
2
. The parameter C is a user-specified

coefficient usually set to between 1.0 and 2.0. Use of this new definition for v increases the amount of
upwinding and therefore the amount of artificial viscosity in the differencing scheme.

. . ......... ..
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The differencing scheme given by equations (6.9)-(6.11) maintains an upwind influence for
supersonic regions anywhere in the general 4-n finite-difference mesh for any orientation of the velocity
vector. Thus, the effect of "rotated differencing" is closely approximated. This aspect greatly enhances
the stability and reliability of this spatial differencing scheme, especially for difficult strong shock-
wave cases. For more details about this spatial differencing scheme see reference 9.

Other researchers have used different forms of the artificial viscosity tern. A notable
example is the one used by Eberle (11-13] for a variety of different applications in both two and three
dimensions. In this approach, a typical supersonic point at which an updated value of the velocity
potential is desired is denoted as P. Reflecting the fact that P is exclusively influenced by physical
data from only the accompanying forward Mach cone, the quantities 00, and poy are evaluated at a point H
which lies a small distance upstream from P. Mathematically this can be formulated by using the following
Taylor series, where only pox is considered

(pox) (po )p +-~ ss (6.13)xH xP as 1P (SH-Sp)

In equation (6.13) s is approximately the arc length along the streamline connecting the points P and H.
The quantity a(pox)/as is formed as follows:

apox a~x/q qx as (6.h)as = q  a---s q- as

Since the distance between H and P is small, a(Ox/q)/as can be neglected. This is equivalent to assuming
that the streamline which connects P and H is straight. Since the local density must be computed anyway,
it is advisable to change from s to p as the independent variable. With these changes and after a little
simplification the final expression becomes

(POx)H = (pOx)p + [(1 -M2-)Ox]P(pH-PP) (6.15)

This scheme can be generalized to both subsonic and supersonic regions by using the familiar "max"
switching function

(p[x)H = [pp+max(O, 1- )(P -pp)](x) P  (6.16)

For the poy and p'z terms it is only necessary to replace *x with oy and #z, respectively.
Another variant of the artificial viscosity term has been presented by Hafez, et al. [14]. In

this scheme, which is designed as an artificial compressibility scheme, the following artificial viscosity
term is added to the standard subsonic differencing scheme (see equation (6.1)):

-(VOxPsAS) x -(VfyP sAs)y (6.17)

where s is the streamwise coordinate direction and v is the switching function defined by equation (6.5).
Addition of this term to the standard subsonic differencing scheme given by equation (6.1) is achieved by
evaluating the density as follows:

Pi,j 
= 
pi,j - vi,j(psAS)i,j (6.18)

where

(PsAS) = ()ij xPAx + (61pAy9)
(~ !-.ijx q Y j (6y9

and

pi,j - Pi-,j if ox. > 0
T =A j 0 (6.20)

i+,j - Pi,j if x.. < 0

A similar definition is used for the y) term.

Implementation of the supersonic zone stabilization is similar in all the spatial discretiza- Vtion schemes just presented. They all maintain conservative form and all automatically exclude the

existence of expansion shocks. This is accomplished by an upwind evaluation of the density in an otherwise
centrally differenced subsonic scheme. In other words, this type of supersonic stabilization allows any
elliptic discretization scheme with the appropriate density modification to be used in mixed elliptic-
hyperbolic calculations. This approach is universal in that it can be applied in finite-difference
[8-10,14] or finite-element schemes [11-13]. Its generality is further substantiated by the vast number of
applications found in the literature. A few of these include airfoil and cascade calculations (15-16],
axisymmetric geometry calculations [17], and unsteady airfoil calculations [18-21]. These spatial discre-
tization schemes have been identified with the terms artificial compressibility, retarded density and
artificial density. In the present review this technique of stabilizing supersonic regions is referred to
as the artificial density or AD scheme.

One difficulty associated with the AD spatial discretization philosophy is that if the
switching function, v and/or the density, p are not properly computed, the shock capture process will
produce large pre-shock oscillations and poor algorithm reliability. Two guidelines offered by South and
Jameson [22] that help eliminate this unacceptable behaviour are: (1) In the calculation of the density
coefficient at i+J,j, that is, ij, for *x > 0, v should be evaluated at i,j, not at i+J,j as in some
formulations; (2) The density values used in calculating p.+, - should be computed at cell centers, that
is, at i+J,j+J and then averaged to obtain pi+jj and pij 'ior example

p i+i,i Z i(o ii,j i 
+ 

pi+i,j- 
)  

(6.21)

With these guidelines the existence of pre-shock oscillations is greatly diminished. Example calculations
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showing the magnitude of these effects are shown in figures 6.1 -6.3. Figure 6.1 shows two pressure
coefficient distributions from Holst and Albert [23] for an NACA 0012 airfoil at a free stream Mach number
of 0.75 and two degrees angle of attack. The two solutions correspond to different values of C (see equa-
tion (6.12)). For both of these calculations v is incorrectly evaluated at i J,j instead of at i,j, and
P is computed directly at grid points instead of the preferred cell centers. As a result a pre-shock
oscillation exists even for relatively large values of C. Figure 6.2 shows the same comparison with v
correctly evaluated at i,j. The pre-shock oscillation has been eliminated even for relatively small values
of C, but could still exist for values of v computed from equation (6.5). Figure 6.3 shows a pressure
coefficient comparison from South, et al. [24] for a non-lifting NACA 0012 airfoil calculation at a free
stream Mach number of 0.85. The two curves correspond to nodal-point and cell-centered evaluation of the
density with v correctly evaluated at i,j in both cases and defined by equation (6.5). The cell-centered
density evaluation clearly gives the superior result with no oscillations.

Another promising approach for eliminating shock oscillations is provided in the work of
Engquist and Osher (25,26]. Finite-difference approximations for the TSP equation are presented, in which
sharp, monotone shock wave profiles are guaranteed to result. The new procedure is identical to the
Murman-Cole scheme everywhere except at sonic lines and supersonic-subsonic shock waves. Goorjian and
Van Buskirk [27] have taken this idea and applied it to unsteady transonic applications using the low-
frequency TSP equation. Much larger time-step values can be used with this modification relative to the
standard differencing scheme, which produces a considerable improvement in computational efficiency.
Extension of this approach to the full potential equation has recently been accomplished by Boerstoel [89].

Other interesting spatial difference schemes suitable for transonic flow applications include
the field panel method of Piers and Slooff [281, the stream function method of Hafez and Lovell [29] the
finite element method of Vigneron, et al. (30], and the penalty function technique described in Bristeau,
et al. [31], Periaux [32], and Bristeau et al. [33]. In the last approach a least-square finite-element
formulation is used to discretize the full potential equation in conservative form. To exclude expansion
shocks the least square functional is modified to include a penalty function. This penalty function takes
on large values for solutions containing non-physical expansion shocks, i.e. for solutions with streamwise
positive jumps in velocity, and small values for solutions with proper entropy increasing shocks. In a
sense this penalty function approach is a dissipative device similar to artificial viscosity that is
designed to exclude expansion shocks. A comparison between this finite-element approach and the conserva-
tive approach of Jameson is shown in figure 6.4. The solutions are in reasonably good agreement. The
finite-element solution exhibits smooth subsonic-supersonic transition and sharp supersonic-subsonic
shock waves.

All of the spatial differencing schemes thus far discussed have been "standard schemes", i.e.,
second-order accurate for subsonic regions of flow and first-order accurate for supersonic regions.
Research on higher-order schemes has not received as much emphasis primarily because of the high level of
development and satisfactory performance associated with standard schemes. The most important cases in CTA
which might require higher-order accuracy are the very sensitive supercritical shock-free solutions,
surfaces with large curvature and therefore locally large flow field gradients, and swept wing solutions
with supersonic-to-supersonic shocks. The later case is poorly simulated by present methods because super-
sonic-to-supersonic shocks are entirely first-order accurate.

Nevertheless, interesting work on higher-order schemes has been presented and is now briefly
reviewed. Jameson [5] presented a spatial differencing scheme which was fully second-order accuate for
both subsonic and supersonic regions of flow. This scheme produced remarkable improvements in accuracy for
supercritical airfoil solutions near their shock-free design points but had stability problems for cases
with strong shocks. Caughey and Jameson [34] presented a similar second-order accurate scheme which was
more successful in dealing with shocks. The essence of their scheme was to revert back to first-order
accuracy in regions of high gradient, including shock waves. Thus, improved accuracy in supersonic regions
(although perhaps not everywhere second order) was obtained without greatly affecting the stability at
shocks.

Ives and Luitermoza [35] introduced an entirely second-order accurate scheme for the non-
conservative full potential equation, and applied it to the solution of transonic cascade flow. Chen and
Caughey [36] developed a third-order accurate (first-order accurate in the supersonic region) finite-
difference scheme for the full potential equation and applied it to three-dimensional flow about axi-
symmetric bodies. In this case, the third-order scheme was 25 % more expensive per iteration than a
standard scheme, but because of increased accuracy for a given mesh, produced an overall improvement in
computational efficiency. Subsequently, Chen [37] presented the same third-order-accurate subsonic differ-
encing scheme with a second-order supersonic differencing scheme and made several types of airfoil solution
comparisons involving both conservative and nonconservative variations. Deconinck and Hirsch [16] presented
results for transonic cascade and airfoil flow fields using a finite-element spatial discretization scheme
with various types of higher-order elements. In this study comparisons with several different iteration
schemes were made including SLOR, ADI, and Hopscotch.

In all these cases reasonably significant improvements in solution accuracy were judged to
exist relative to standard schemes on comparable size meshes. However, many questions about higher-order
CTA methods remain unanswered. In some cases decreased robustness, that is, more iterations per solution
or lack of stable convergence altogether, coupled with increased computer time per iteration, make the
desirability of such schemes questionable. The ability of such schemes to actually improve the accuracy at
shock waves without increasing the grid resolution is another unanswered question. More work in the area
of higher-order accurate schemes needs to be done before the final level of benefit can be established.

6.1.2 Accelerated iteration schemes

Currently the area of most intensive research in CTA involves the search for solution proce-
dures which are more computationally efficient. This is motivated by the need for more economic computa-
tional tools for use in the aircraft industry. The computational efficiency of an algorithm can be analyzed
by studying two algorithm properties: (1) the amount of work required for a solution, that is, the rumber
of floating point operations, and (2) how the work is organized. It is the last category which determines
the processing rate, that is, the number of operations processed per second of CPU time. This is an

importsant factor in determining the computational efficiency available on vector computers. Review of
several algorithms, specifically with respect to vector computational efficiency, will be presented in
section 6.1.2.5.
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Because transonic flow problems are inherently nonlinear, no direct solution procedures are
theoretically known to exist. Therefore, transonic flow solution procedures involve an initial "guess"
solution, followed by iteration, and hopefully convergence to the final answer. The amount of computa-
tional work required for a solution, therefore, is determined from two categories: (i) the number of
iterations per solution and (2) the number of operations per iteration. This situation can b- clarified
by the following simple example: Suppose we seek the solution to some discrete equation

L = 0 (6.22)

which approximates a nonlinear differential equation. An iterative solution procedure to solve equation
(6.22) can be written

NCn + Lon = 0 (6.23)

where cn(= on+1ln) is the correction, Lon is the nth iteration residual, and N is an operator determined
by the iteration scheme. Let en(= €n_€) be the error after the nth iteration. Then Cn = en+l-en and
equations (6.22) and (6.23) can be combined to give

n+1 Me
n 
= M2en-1 (6.24)

where

M = I-N-
1 
L (6.25)

In equation (6.24) M is assumed to be stationary. For the iteration procedure to converge the magnitude of
the largest eigenvalue of M must be less than one. The relationship of the eigenvalues of M with respect
to one also controls the convergence rate. If all eigenvalues of M are zero, which is not possible for a
nonlinear problem, the initial error is reduced to zero in a single iteration. For more discussion
regarding this analysis see Ames [38] and Ballhaus, et al. [39].

A typical convergence history curve for the previously discussed SLOR relaxation scheme is
sketched in figure 6.5 (curve A). Because the maximum eigenvalue of the SLOR scheme, SLOR, is near unity,
convergence for this scheme can be very slow,especially as Ax - 0 where XSLOR -1. Several options exist
for improving this situation. The first involves improving the initial condition solution, e', for
example, by using a grid sequence. The previous convergence history curve modified by using a grid
sequence to improve the initial guess is given in figure 6.5 (curve B). Thus, an acceptable convergence
tolerance is reached with less work, but the asymptotic convergence rate is essentially unchanged.

Other options available for improving convergence involve improvements associated with M, that
is, reducing the number of operations per iteration and/or reducing the magnitude of the maximum eigenvalue
of M. This is exemplified by curve C in figure 6.5 where the convergence rate has been improved. These
options, of course, mean the implementation of new algorithms.

Specific areas which will now be discussed include: (I) fully implicit approximate factoriza-
tion (AF) schemes, including alternating direction implicit (ADI) schemes, (2) semi-direct schemes,
(3) multi-grid schemes, (4) extrapolation schemes, and (5) methods tailored to vector computers. Both the
multi-grid and extrapolation techniques actually represent schemes for accelerating the convergence of
other iteration schemes. The implicit AF schemes are reviewed first.

6.1.2.1 Approximate factorization schemes

Several general guidelines for the construction of implicit approximate factorization (AF)
schemes can be formulated by considering the two-level iteration procedure

NC
n 

+ wLo
n 

= 0 (6.26)

where Cn is the correction (0n1-0;n); Ln is the residual, which is a measure of how well the finite-
difference equation is satisfied by the nth level velocity-potential solution (0n); and W is a relaxation
parameter. The iteration scheme given by equation (6.26) can be corsidered as ar iteration in pseudotime,
where the n superscript indicates the time-step level of the solution, that is, ( )n+l_( )n . at( )t. The
operator N determines the type of iterative procedure, and therefore determines the rate at which the
solution procedure converges.

Classical successive over-relaxation (SOR) schemes or SLOR schemes effectively use only a
portion of the L operator in forming the N operator. As a consequence, the iteration scheme is relatively
simple, but the convergence rate may be very slow. In the AF approach, the philosophy is to choose a
representation for N that closely approximates L. This, in theory, will produce a scheme with good conver-
gence characteristics. The procedure for obtaining N consists of two steps: (I) linearize L and (2) factor
the linearized result. There are usually two factors for two-dimensional algorithms and three factors for
three-dimensional algorithms. The resulting scheme retains the simplicity of requiring only narrow-banded
scalar matrix operations. The effects of both the error terms resulting from the factorization and the

b linearization are removed from the solution simultaneously by means of the iteration scheme. Because each
grid point is influenced by every other grid point during each iteration, much faster convergence can be
obtained.

Several pertinent early examples of AF schemes can be found in Peaceman and Rachford [40],
Douglas [41], Douglas and Gunn [42], and Yanenko [43]. In these pioneering applications different forms of
the AF scheme are introduced and applied to purely parabolic or elliptic equations. Additional classical
information regarding AF schemes can be found in Mitchell (44]. The first applications of the AF approach
to transonic flows governed by potential formulations is the work of Ballhaus and Steger [45], in which
numerical solutions of the low-frequency (unsteady) transonic TSP equation were sought. Since this work, t
many calculations using AF iteration schemes have been used in time accurate transonic applications
(19-21,46-49]. AF algorithms have also been applied in the relaxation mode for solving the steady TSP
potential equation in two space dimensions [39] and the full potential equation in both two [8-9,16,50-51]
and three [10,52-56] space dimensions.

A particularly successful AF scheme, designated AF2, can be formulated for the two-dimensional
full potential equation written in nonorthogonal curvilinear coordinates by choosing the N operator of
equation (6.26) as follows [9]:

,I
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aNC~j = ia-6 nA.m j Ad )C'? (6 .27a)

where

-n A3\

Ai PiOi-iG i- , (6.27b)
-nA = p.. 3- (6.27c)

A i= -i \_ / i,j-

The P and p coefficients are defined by equation (6.9), and a is an acceleration parameter which may be
considered as the inverse of a pseudo-time step, At

-
'. The best approach for choosing a is to use a

sequence of values ranging from small to large time steps, that is, large to small values of a. The small
time steps are particularly effective for reducing the high-frequency errors and the large time steps are
effective for reducing the low-frequency errors. A suitable a sequence with M values is given by [8]

k-1
ak m aH(aL/aH

)
M-1 k = 1,2,....,M (

6
.28a)

The sequence endpoints (aL'aN ) can be analytically approximated by

a and aL %1 (6.28b)

Refinement of these endpoints by numerical experiment increases the efficiency of the iteration procedure.
Multiplying out the two factors of equation (

6
.27a) yields an approximation to the L operator

defined by equation (6.7) plus two error terms. This approximate L operator does not have the mixed-
derivative terms contained by the exact L operator and has been effectively linearized; that is, the
coefficients used in equation (

6
.27a), Ai and Aj, are evaluated at the nth iteration level. In spite of

these approximations, rapid convergence is achieved for this iteration scheme.
The AF2 scheme is implemented in two sweeps as follows:

sweep 1 (.A A.)? = mWL,.,. (
6
.29a)

sweep 2 (a)C f (6.29b)
n i i,3 1,3

where w is a relaxation factor usually set equal to 1.8, and f' - is an intermediate result array stored
at each point in the finite-difference mesh. To maintain stabiliy for transonic calculations, primarily

strong shock calculations, the addition of temporal damping is required. This is achieved by adding

+ a0d (6.30)

inside the brackets of the second sweep. The parameter 9 is a user-specified constant which can be
adjusted as needed. The double arrow notation on the c-difference operator indicates that the difference
is always upwind, which depends on Lhe sign of the contravariant velocity component in the 4 direction, U.
The sign on the temporal damping term is chosen so as to increase the magnitude of the second sweep
diagonal, thus insuring diagonal dominance of the second sweep inversion.

The implicit algorithm just discussed has been coded into a transonic airfoil analysis
computer code called TAIR. Computational results produced with TAIR taken from references 57 and 10 are
shown in figures 6.6-6.7. The pressure coefficient distribution for a slightly off-design Korn airfoil
calculation is compared in figure 

6
.
6
a with a result obtained from the GRUMFOIL computer code [581. The

two results are in excellent agreement. The slight disagreement which exists in the supersonic region is
caused primarily by differences between the TAIR and GRUMFOIL supersonic spatial difference schemes.

The rms error (Erms) convergence history curves for the Korn airfoil calculation are presented
in figure 6.6b. (Using rms error to compare convergence performance is a more quantitatively correct proce-
dure than using the standard maximum residual quantity. See references 8 and 59 for a complete explanation
of this point.) The three curves shown in figure 6.6b correspond to the following iteration schemes:
(1) AF2, (2) hybrid, and (3) SLOR. The hybrid scheme is a combination semi-direct/SLOR iteration scheme
presented by Jameson [5], which is composed of one semi-direct-solver iteration (see Sect. 6.1.2.2)
followed by several SLOR iterations. The purpose of the SLOR iterations is to smooth high frequency
errors generated by the direct solver step ir. regions of supersonic flow. The third scheme (SLOR) is
simply the hybrid iteration scheme without benefit of the semi-direct-solver step. For this calculation
the AF2 scheme is about five times faster than the hybrid scheme and about ten times faster than SLOR.

As the free stream Mach number approaches unity, interesting airfoil shock-wave patterns
develop which represent an extremely difficult reliability test for CTA algorithms. An airfoil solution

4. computed by TAIR (101 which demonstrates this feature is shown in figure 6.7. This example was computed
for an NACA-0012 airfoil at M.= 0.95 and a = 4 deg. The Mach number contours clearly illustrate the
existence of a so-called "fishtail" shock-wave pattern downstream of the airfoil trailing edge. This
difficult calculation demonstrates the convergence reliability associated with the AF2 transonic relaxa-
tion procedure.

Another noteworthy AF scheme is the AF3 scheme introduced by Baker (51] for solving the non-
conservative full potential equation for transonic flow about airfoils (see equation (2.33) for a
description of this equation). The AF3 scheme is given by

[-CyAd )..) (- )C, a QW ,j (6-31a) '

for subsonic regions of flow and by

• ~ ~ -c 8 u~x(. .'~ AexA ~ ~ ,Lo in (6.31b)

for supersonic regions of flow (when u > 0). The difference direction on the third term of the first

factor is reversed when u t 0. The coefficients A, C, Act Cc, and A, are determined from the nonconserva-
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tive full potential equation written in canonical form (stream and stream-normal coordinates, [51]) and are
given by

Au  _,1-) U2 , Ac = v2

CU = (-a !F , C = (6.32)

A =A +A , C = u +Cu 0 u +cc

where u and v are the velocity components along the x and y directions, respectively, a is the local speed
of sound, and q is the magnitude of the total velocity vector. As in the previous AF2 scheme, w is a
relaxation factor, a an acceleration parameter (cycled over a sequence of values), and L i,j is the nth
iteration residual defined by

Loi,= (Adxx + Bxu 6yy + C6 )¢, (6.33a)
1, x xyy yy 1,3

for subsonic regions of flow and by

n = (A6 +A +i j6 * B + C + Cu ).3
1,3 cxx u cxyxy u x y c y ,, (6.33b)

for supersonic regions of flow (when u > 0 and v > 0). The additional coefficients Bu and Bc are given by( )u<u cU~

B = 2 1 _ -R , B 2uv (6.33c)
u ( a2 )q c q

The operators px( ) and Py( ) are central averaging operators defined by (for example)

1X( )i,j = i[( )i+1,j + ( )i-lj]

The AF3 factorization is similar to the AF2 factorization and produces exceptional improvements
in computational speed. This fact is illustrated in figure 6.8 (taken from Ref. 2). Figure 

6
.8a shows the

pressure coefficient distribution about an HACA 0012 airfoil at M.= 0.75 and a = 2 deg for several differ-
ent levels of convergence. After just 10 AF iterations, which corresponds to about 13 SLOR iterations, the
solution is nearly converged. The AF3 convergence history for this case is compared with an SLOB conver-
gence history in figure 6.8b. The SLOR convergence history is enhanced by using the standard grid refine-
ment procedure involving two grids, coarse and fine. For this case the SLOR scheme required over 400
iterations to reach plotable accuracy while the AF3 scheme reached plotable accuracy in about 20 iterations
(26 equivalent SLOR iterations).

The two-dimensional AF3 scheme just discussed has been extended to three dimensions by Baker
and Forsey [53]. Solutions of the nonconservative full potential equation have been obtained for wing and
wing/fuselage combinations with a factor of 4 or 5 increase in computational efficiency relative to
standard SLOB schemes. In addition, three-dimensional solutions for wing geometries have been obtained by
Sankar, et al. [54] using the strongly implicit procedure of Stone [60], by Benek, et al. [55] using two
AF scheme variations called AFZ and AFZ2, and by Holst and Thomas [56] using the standard AF2 scheme. In
all cases significant improvements in computational efficiency relative to SLOR were obtained. Additional
improvements in computational efficiency for transonic flow calculations from AF procedures appear to be "
likely. The work of Catherall (61] suggests an improvement by splitting the contributions of the various
transformation metrics properly between the factors. In addition, optimal values for the acceleration
parameter sequence and the relaxation factor are derived and discussed.

More work needs to be done in obtaining optimal convergence before the ultimate success of the
AF scheme is realized. However, with the present level of development, it appears that fully implicit AF
schemes might be the next generation of iteration algorithms to replace the existing SLOR scheme for a wide
variety of transonic flow applications.

6.1.2.2 Semi-direct iteration schemes

Another type of advanced iteration scheme capable of reducing computational work is the semi-
direct scheme. The philosophy of this class of iteration schemes can be discussed by using the N-L
operator notation used in the previous section, see equation (6.26). The first step associated with the
formulation of a semi-direct iteration scheme involves the construction of an appropriate linearized N
operator which closely resembles the L operator. This step is essentially identical to the first step in
the construction of an AF iteration scheme. Next, the resulting matrix equation is inverted directly using
a suitable direct inversion routine [62-64]. Because transonic flow is inherently nonlinear, this process
must be repeated iteratively, thus the name semi-direct. This scheme was first applied to slightly super-
critical flows by Martin and Lomax [65] in 1974, and latcr extended to strongly supercritical cases by
Martin [66] in 1976. Both of these studies involved nonlifting airfoil solutions using the TSP equation and

P in both cases large improvements in computational efficiency over standard SLOR schemes were realized.
In 1975 Jameson [51 presented a hybrid iteration scheme for the full potential equation which

used One direct-inversion step followed by several SLOR steps. Other notable works utilizing semi-direct
iteration schemes for solving the full potential equation include Martin [67] and Yu and Rubbert [68]. In
the latter work, Yu and Rubbert took the hybrid scheme of Jameson [51 and modified the direct inversion
step by evaluating the density in the upwind direction according to Hafez, et al. [1], that is, they used
a variant of the AD spatial differencing procedure. This modification stabilized the semi-direct iteration
scheme for supersonic regions and eliminated the need to periodically smooth the supersonic regions by
using SLOB iterations. As a result the computational efficiency of this airfoil calculation procedure was
greatly improved.

A more recent example of the semi-direct type of iteration procedure is found in the work of
Caspar, et al. [69]. With this approach both subcritical and supercritical shock-free solutions about two-
dimensional cascades were obtained. A finite-area spatial discretization for the conservative form cf the
full potential equation was used. In this procedure an outer nonorthogonal mesh is used to establish the
solution globally. In this global grid a blade leading edge singularity exists and can adversely affect
the leading edge solution, especially for blunt leading edge calculations. To improve the solution, if
necessary, a "local analysis" is performed on an orthogonal body-fitted mesh only in the vicinity of the i,
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blade leading edge such that the effect of the leading edge error is removed. Values of the potential are
interpolated from the results of the first analysis (global mesh) and prescribed on the boundaries of the
local mesh.

A sample calculation using the technique of Caspar, et al. [69] for the Korn cascade geometry
is shown in figure 6.9. The Caspar results are in very good agreement with the original hodograph design
solution. Even more impressive is the required computer time, only 15 seconds on an IBM 370/168 computer.
For this calculation the global mesh contained 45 x 11 mesh points and required 11 iterations while the
local mesh contained 61 x 11 mesh points and required 10 iterations.

The technique just discussed is compared in a theoretical sense with SLOR and ADI relaxation
schemes by Caspar [70]. In this study the importance of using artificial viscosity and implicit temporal
damping for transonic calculations by any of the three schemes is emphasized. The convergence rate for the
semi-direct scheme of Caspar, et al. [69] decreased as the Mach number level is increased. Therefore, this
scheme, which is very efficient for subcritical cases, may be less efficient than properly formulated SLOB
and ADI schemes for transonic calculations, especially on fine meshes.

6.1.2.3 Multigrid iteration schemes

The multigrid iteration scheme is actually a convergence acceleration technique and requires
a base iteration scheme, for example, SOR, SLOR, AF, etc. Multigrid schemes have existed for quite some
time, having been first introduced by Fedorenko [71] in 1964. Since then several authors have analyzed the
technique, including Bakhvalov [72] and more recently Nicolaides [73] and Hackbusch [74]. The most signi-
ficant result of these analyses is the multigrid convergence rate prediction. For example, the number of
operations required for convergence of a standard five-point discretization of Poisson's equation using a
multigrid enhanced iteration scheme is of the order of several hundred operations per grid point, and in
practice can be much less (75]. This is many times fewer operations than the number required by standard
SOR or SLOR schemes.

The multigrid technique produces this fast rate of convergence by using a sequence of grids
ranging from very coarse to very fine. Each grid is used to eliminate one small range of errors in the
error frequency spectrum, namely the errors of highest frequency supported on each mesh. Many relaxation
schemes exist which work very well on high frequency errors, for example point Jacobi, AF (with properly
chosen acceleration parameters), etc. One of these relaxation schemes is used on each mesh to remove the
high frequency error. The nice aspect of this approach is that the high frequency error on the coarsest
mesh is actually the lowest frequency error existing in the problem. Because this usually troublesome low
frequency error is efficently dealt with on a coarse mesh, very little computational work is expended in
removing it from the solution. Thus a tremendous convergence rate enhancement is obtained.

Implementation of a typical multigrid scheme is described in general terms as follows:
Suppose we desire a solution to

Lh, = f (6.34)
where L

h 
is a typical linear difference operator which approximates a differential operation L on a mesh

associated with the grid spacing h. The quantity f contains the problem boundary conditions. Let

w = u+v (6.35)

where u is an approximation to * and v represents an error. Therefore, as the iteration scheme converges
u * and v - 0. The basic multigrid scheme can be expressed by

L
2 h  

v + I2h(Lhu-f) = 0( -62h 20 (6.36)

L .h

where L is a finite-difference operator which approximates L on a mesh associated with the grid spacing
2h, instead of h, that is, twice as coarse as the original mesh. The operator Ih is an interpolation or
averaging operator which transfers values of the residual (Lhu-f) from the fine mesh to the coarse mesh.
After the coarse mesh corre:tions, v, are obtained, they are transferred back to the fine mesh by using

new h
u u+Ihv (6.37)h

where I h is an interpolation operator. The process can continue to coarser meshes so that ultimately just
2h

one or maybe several mesh cell widths span the entire domain of interest.
To extend the idea to nonlinear problems a simple modification is helpful. By adding and

subtracting L
2
hu from equation (6.36) the new form becomes

L2h--Lwh uf (6.38)

'I where

Lh h h(6.39)

The quantity u represents a new or improved estimate of * which is determined from the coarse mesh. The
quantity ? is a modified right-hand side which essentially represents the difference in residuals between
the h and 2h meshes. New updated coarse values are transferred back to the fine mesh by using

u unewI.h(uu) (6.40)

Thus-the error quantity v does not have to be stored as in the original version.

Applications utilizing the multigrid scheme were slow to materialize after it. introduction

primarily because of difficulties in implementation and general underestimation of the potential of multi-

grid enhanced schemes. The first work to apply the multigrid scheme numerically was that of Brandt (76] in
1972. Later the multigrid scheme was formulated in general terms by Brandt (75]. In this latter reference
a good historical background of the multigrid scheme is presented, including a review of related earlier
work.
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The first use of the multigrid scheme for transonic calculations was presented by South and
Brandt [77]. In this study numerical solutions of the TSP equation for nonlifting airfoils were obtained.
The speed of an optimized SLOR scheme was improved by a factor of five on uniform meshes and by a factor
of two on stretched meshes. A primary difficulty reported by South and Brandt involved the existence of a
variety of limit cycle oscillations between several grids, thus inhibiting convergence. This problem
seemed to be the result of insufficient smoothing of the high frequency errors on one grid before passing
to the next coarser grid. South and Brandt concluded that the SLOR base algorithm used in the multigrid
scheme did not have uniform smoothing properties in both directions, especially for non-uniform, highly
stretched meshes. They hypothesized that alternating the SLOR sweep direction or utilizing an ADI itera-
tion scheme as the base algorithm might solve this problem.

Another approach proposed by Arlinger [78] was to refine or coarsen the mesh spacing in only
one coordinate direction while doing line relaxation along the opposite direction. This technique
produced a convergence rate acceleration but did not take full advantage of the multigrid scheme. To date
the most successful application of a multigrid convergence acceleration scheme to a practical transonic
problem is the work of Jameson [79].

In this study the full potential equation in conservative form is solved using a multigrid
scheme with a specially constructed AF base iteration scheme. This scheme when applied to the following
linear model equation

A$xx + Boyy = 0 (6.4i)

is given by

(S-A62)(S-B62)Cn = wSL n. (6.42)
x y 1 1,j

where A and B are constants, w is the standard relaxation factor, and S and L are operators defined by

S = a +a + a 6 (6.43)

and

Lo n  = (A62 + B62), (6.44)
1 ,3 x y 1,3

In equation (6.43) ao, al, and a2 are parameters which depend on flow type and user input. The quantities
6- and 6- denote first-order-accurate upwind difference operators in the x and y directions, respectively.The Jameson scheme uses the recursive approach for implementing the multigrid philosophy,

instead of the adaptive approach advocated by Brandt (75]. In the adaptive multigrid approach the decision
to proceed to the next mesh, either coarser or finer, is based on a convergence rate criteria. If the
solution residual is dropping slowly the iteration process proceeds to coarser meshes. Conversely, if the
solution residual is dropping rapidly the iteration proceeds to finer meshes. In the recursive approach of
Jameson a single multigrid cycle starts with an AF iteration on the finest mesh, followed by an AF itera-
tion on the second finest mesh, etc. This continues until the coarsest mesh is reached. Then the process
is reversed starting with the coarsest mesh and ending with the second finest mesh. Therefore, each multi-
grid cycle consists of one AF application on the finest mesh and two applications on each of the remaining
meshes. If a fine grid AF iteration is defined as a unit of work, then one multigrid cycle, using the
recursive approach, requires about 1 2/3 work units plus interpolation operations.

Results produced by the Jameson multigrid scheme are displayed in figures 6.10-6.13. The
pressure coefficient distribution for an NACA 64A410 airfoil at a free stream Mach number of 0.72 and an
angle of attack of 0 deg is displayed in figure 6.10. A moderate strength shock exists at about 60 % ofchord. Notice that the residual has been reduced below 10- 12, which is approximately an eight order of i
magnitude reduction from the initial value, in only 29 multigrid cycles. Convergence histories for this
case, which were computed using different numbers of meshes (from one mesh, that is, no multigrid, up to
five meshes), are shown in figure 6.11. The convergence rate (CR) which is defined as the mean reduction
in the average residual per unit of work, is also displayed for each curve. Increasing the number of meshes
or equivalently, increasing the coarseness of the coarsest mesh, greatly improves the convergence rate.

The pressure coefficient distribution and associated convergence history for a relatively
strong shock calculation (NACA 0012 airfoil,M.= 0.75, and a = 2 deg) are shown in figures 6.12 and 6.13,
respectively. For this case the multigrid convergence is also very rapid after an initial hesitation. A 4ex
study of the transient solution showed the formation of a pre-shock overshoot which is absent in the
steady-state solution. _

Other researchers have been recently turning to the advantages of multigrid; and a few
examples are now presented. Arlinger [17] has used multigrid coupled with an SLOR iteration scheme to
solve the full potential equation for axisymmetric calculations. McCarthy and Reyhner [80] and Brown [81]
have applied the multigrid convergence acceleration scheme to an existing three-dimensional engine inlet
computer code. The base algorithm was SLOB and the governing equation was the nonconservative full poten-
tial equation. For all of these applications a substantial improvement in convergence rate relative to
SLOR was demonstrated. Many other references pertinent to the multigrid scheme with varying types of S
applications do exist. A few are listed here as follows: Brandt (82,83], Fuchs (841, McCormick [85],
Brandt, et al. [86], Deconinck and Hirsch [87], Shmilovich and Caughey [88], and Boerstoel (89].

6.1.2.4 Extrapolation techniques

Another class of convergence acceleration techniques designed to improve the convergence of
standard relaxation procedures is the extrapolation technique. The basic idea is to obtain improved conver- 1
gence by extrapolation, using several previous solution iterations which are obtained from the base itera-
tion scheme, for example, SOR or SLOR. The extrapolation process is applied periodically with several
(10-50) base relaxation iterations in between each extrapolation. This convergence acceleration procedure
can be especially effective for very fine mesh calculations in which the convergence rate of standard
relaxation techniques suffers drastically.

Several authors including Martin and Lomax [65], Hafes and Cheng [90], and Caughey and
Jameson (911, have experimented with different variations of this approach. In the Caughey-Jameson study,
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extrapolation was used to accelerate the convergence of transonic nacelle flow fields (axisymmetric). The
nonconservative full potential equation was solved using SLOB as the base iteration scheme. The general

reasoning for this type of approach proceeds as follows: In a conventional, stable relaxation scheme, such
as SLOB, the relaxation matrix has several distinct eigenvalues, all less than one and ordered such that

i > IXII >  IX21 > .... > XNI (6.45)

After many iterations the convergence rate is controlled by the largest or dominate eigenvalue, A1 , such
that

C
n
+1 " XACn (6.46)

where cn+l(= *n+i cn) is the correction and n is the iteration index. Usually A1 is near unity, especially
for fine mesh calculations, and therefore, convergence can become painfully slow. The extrapolation process
is used to alleviate this situation as follows: An estimate for the remaining error in the solution at the
nth iteration, el

, 
in terms of A1, can be obtained and is given by

e
n  

cn+I/(1-) (6.47)

Since 1/(I-X1) can be relatively large (e.g. i00), this represents a rather drastic correction for the
solution. Therefore, extrapolation of this type should be performed only when a dominate eigenvalue is

recognized. In the Caughey-Jameson approach the ratio of two successive corrections over a sampling of
grid points in the flow field was computed. If the standard deviation from the mea. ratio of successive
corrections was less than some tolerance, then a dominate eigenvalue was judged to exist and an extrapola-
tion step was implemented. Application of this technique to a typical axisymmetric nacelle flow field
produced the convergence history shown in figure 6.14. The finite-difference mesh used for this case was
64 x 16. The extrapolated scheme converged much faster to small residuals than the line relaxation scheme
for all fixed values of the overrelaxation factor.

Another notable application of the extrapolation technique for convergence acceleration is in
the work of Yu and Rubbert [68). In this application an extrapolaton technique similar to Hafez and
Cheng [90] and Caughey and Jameson [911 is used to accelerate the convergence of a three-dimensional wing
calculation. To speed the development of a dominate eigenvalue in the relaxation process, and therefore
permit more frequent extrapolation, two modifications to the standard SLOB relaxation scheme were made.
The first modification was to reverse the direction of sweep, that is, in the new scheme, the line relaxa-
tion process starts at the wing and proceeds towards the far field. With this modification, the wing solu-
tion propagates to the interior much faster than in the standard far-field-to-surface method.

The second modification involves the use of a smaller overrelaxation parameter which improves
high frequency error reduction while promoting the development of the dominate eigenvalue. Computational
experiments using this approach have shown that the dominate eigenvalue can adequately be predicted within
ten iterations following the previous extrapolation. Consequently, Yu and Rubbert have adopted the policy
of extrapolating every ten iterations once the initial features of the solution have been established.
Either the ratio of two successive maximum corrections or the ratio of two successive corrections averaged
throughout the entire flow field is used to approximate the dominate eigenvalue, A. The same value of A is
used in calculating the extrapolated velocity potential at each grid point. Maximum tolerated values of A
equal to 0.95 for the coarse and medium meshes and 0.99 for the fine mesh have been found to be reliable
and efficient.

Convergence behaviour for an example calculation using the Yu-Rubbert extrapolation technique
applied to the Jameson-Caughey FL027 finite-volume code is shown in figure 6.15. This wing calculation was
performed at a free stream Mach number of 0.8 and an angle of attack of 3.06 deg. The new method offers a
significant improvement in convergence speed relative to the original relaxation technique.

Perhaps the most important advantage of extrapolation techniques, in general, is the fact that
they are relatively easy to implement in existing computer codes. Therefore, if a dominate eigenvalue is
easily identifiable, a reasonable convergence acceleration can be obtained with little additional program-
ming effort.

6.1.2.5 Methods tailored to vector computers

The use of CTA as a relatively fast and inexpensive aircraft design tool is finding increased
acceptance in the aircraft industry. The expanded use of these tools in the future requires faster and more
cost-effective computers. In this regard vector computers such as the CRAY-I and the CDC CYBER 205 show

considerable promise. These vector machines offer greatly enhanced computing speeds arising from the
ability to operate on many calculations s.multaneously (parallel machines) and/or in an assembly line
fashion (pipeline machines). More discussion regarding vector computer architectures can be found in
reference 92.

Because of the nature of the Pneed enhancement, these machines tend to favour certain classes
of al, rithms. Algorithms which are basi'lily recursive, such as SLOB, tend to have difficulty obtaining
maximum performance on vector computers. An example of this is given in Smith, et al (93]. In this study
the FLO-22 transonic wing analy:is computer program written by Jameson, et al. [94] was vectorized for the I

CDC STtR-100 pipeline vector computer. Although this study did not produce optimal vectorisation of the
SLOR algorithm contained in FL022, it does represent the level of efficiency obtainable with a reasonable
conversion effort. The resulting vectorized code ran at about the same rate as the scalar code ran on the
CDC 7600 computer. This disappointing performance was caused by the inherently recursive nature of the
tridigonal inversion step in the SLOB algorithm. In addition, since the tridiagonal inversions associated
with the SLOR algorithm are interdependent, they must be performed one at a time, a situation which further
complicates conversion to vector code.

Several researchers have presented new algorithms especially designed for vector computers,
including Keller and Jameson [95], Hafez, et al. [1I], Redhead, et al. [96], Hotovy and Dickson [97], and
South, et al. [24]. The primary motivation for this algorithm research was to improve computational effi-
ciency on vector computers. In references 14, 95, and 97 the researchers generally stressed vector charac-
teristics above all else. As a result, these vector algorithms could process very large numbers of grid

points per second but usually required more iterations than standard SLOB to converge.
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In South, et al. [241 an algorithm called ZEBRA II, which is highly vectorizable and requires
about the same number of iterations to converge as SLOR, is described. The ZEBRA II algorithm is an
explicit or point scheme which mimicks a full plane SOR algorithm and is designed to solve the conservative
full potential equation. In its simplest form for an unstretched three-dimensional Cartesian mesh, ZEBRA II
is given by

A2Rn

BCijk " - + BCn-l,j,k (6.48)

Pavg

where the i,j,k subscripts represent position in the finite-difference mesh, CYi,j,k is the correction as
previously defined,Ri

1
2 is the residual, and

B + B + 2+ 2 (6.49)
Wx Wy (Lz

Upwinding in the residual is achieved by using density coefficients defined by equation (6.18), B is a
coefficient controlling the amount of xt, and w,, wy, and w, are relaxation parameters which typically
are less than or equal to two. The ZEBRA II procedure is composed of two different types of sweeps. The
first is an explicit sweep which is performed for all j + k odd points. The residual for this sweep is
entirely evaluated at the nth time level. (Values of f required in the i - 1 plane for the first sweep are
taken from the n + 1 time level. This is permitted because the direction of sweep is along increasing
values of i.) The second sweep is performed for all j + k even points. The residual for this sweep is
evaluated at the nth time level for j + k even points and at the n + 1 time level for j + k odd points.

The ZEBRA II algorithm has two features advantageous for vector computation. First, most
operations can be performed with plane parallelism, thus allowing long vectors and efficient operation on
any vector computer. Second, the algorithm sweeps through the solution array (4) in only one direction,
thus facilitating contiguous data access. This simplifies the operation of vector computers which require
contiguous data access, such as the CDC STAR-100. Implicit algorithms, which sweep through the data base
in different directions, require several data transposition steps for each iteration to maintain contiguous
access on this type of vector machine.

The ZEBRA II algorithm takes a step in the vector computer direction, but other approaches for
vector computation may still be superior. A theoretical study comparing the vector processing attributes
of four transonic full potential algorithms (SLOR, ADI, AF2, and ZEBRA II) was performed by Holst [981
utilizing a mathematical model of a pipeline vector computer. This theoretical analysis was based on
vector length categorization of floating point operation counts obtained from each of the algorithms. In
other words, how many floating point operations are required (per iteration, per grid point); and assuming
"perfect" programming, what are the resulting vector lengths. From this information an efficiency or per
cent of the maximum processing rate can be cemputed by using a standard vector computer performance curve.

The efficiency of a particular algorithm is only one of three important considerations needed
to determine total execution time for a solution. The other two considerations are the number of operations
per iteration and the number of iterations required for a solution. The 5mplicit schemes, for example, AF2
and ADI, are not as efficient relative to the explicit schemes, for example, ZEBRA II, in the first two
categories, but overwhelmingly gain in the last category. The results of the reference 98 study indicate

that implicit algorithms will still enjoy overall supremacy on vector computers relative to explicit or
point iterative techniques when all aspects are taken into consideration.

The type of vector computer modeled in the reference 98 study attained most of its efficiency
only with long vectors (consisting of 1000 or more elements). In other words, planar parallelism was
essentially required for efficient operation. Other vector computers do exist that attain very efficient
operation with much shorter vectors, essentially requiring only line parallelism. Also different computer
hardwares provide for different alternatives for data transposition, with some machines having no trans-
pose penalties at all. Because of these features, implicit algorithms may provide eve "'trger savings in
overall performance. The exact amount of savings can only be determined when all these - tors are con-
sidered.

6.2 Grid generation

With the advent of faster, more efficient numerical algorithms and larger, more sophisticated
computers, the ability to simulate inviscid transonic flow about complete aircraft is within reach. The
major obstacle preventing the achievement of this goal is the difficulty in generating "suitable" grids.
The primary attributes associated with a suitable grid are that it must be well-ordered, orthogonal (or
nearly orthogonal), relatively.smooth in variation, body conforming, and relativelyfree of strong singu-
larities. In addition, grids obtained for reasonably complicated configurations (for example, full air-
craft), must be routinely generatable in such a way that coordinate lines of the same family do not cross.
Another desirable feature is that grids nhould be solution adaptive. That is, the grid should be determined

4$ simultaneously with, and therefore, influenced by, the flow solution. Thus, the limited number of grid4 points available can be clustered in regions where they are needed most, i.e., in regions of large flow
gradient. Some work on solution adaptive grids has been conducted and can be found in references 99-103.

Of course, not all of these attributes are at the same level of importance for the different
available flow solver schemes. The body conforming aspect is generally desirable for allowing simple and
accurate application of Iriundary conditions. Body conforming grids allow for simple and efficient control
of grid point clustering and are especially important for bodies with large curvature or slope singulari-
ties, which occur frequently in aerodynamic applications.

A few researchers have used non-body conforming grids and have obtained good results [104-107].
These formulations generally rely on interpolation for boundary condition application, which for some
geometries (for example, airfoils) works quite well. However, for applications involving general geometries
with high curvature (especially three-dimensional applications), non-body conforming meshes may be diffi-
cult to cluster appropriately, especially when such features as wing twist, sweep or dihedral are present.
Under these circumstances the mesh may become skew with respect to the body. This may produce inaccuracies
at the boundary which is precisely the region of greatest sensitivity. In addition, because the grid system
used in a non-boundary conforming application is usually stretched Cartesian, the mesh efficiency can be
quite low (that is, the ratio of the number of surface grid points to the local number of grid points is
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usually quite low for a stretched Cartesian mesh compared to a boundary-conforming, mapped mesh). The
vast majority of researchers in CTA use body conforming grids, and therefore, the remaining discussion
will be restricted to this area.

Generally speaking, two approaches are available for generating body-oriented grids: Coordi-
nate transformations and triangularization. The latter approach is usually associated with finite element
techniques which are generally based on an integral equation formulation. This places less stringent
smoothness requirements on the grid. Also, complex geometrical topologie. with large surface curvature or
surface slope singularities can more generally be discretized and adequately clustered with randomly
distributed triangles than with contiguously ordered quadrilaterals. However, many advantages are asso-
ciated with the coordinate transformation procedures which are not shared by triangularization techniques.

The major advantage associated with coordinate mapping techniques is the simple grid point
ordering which results. This feature greatly simplifies the flow solver algorithm by producing a simple
matrix structure. For triangularization procedures the grid points are generally ordered in a semi-random
fashion. This produces a flow solver algorithm with a more complicated sparse matrix structure. Therefore,
solution algorithms associated with coordinate transformations are simpler, that is, they generally fdquire
fewer operations per iteration. This advantage is much more important when considered in the light of
vector computers (see Sect. 6.1.2.5). For vecto_-ization to be efficient, contiguous streams of data must
be easily identifiable. The inversion of a sparse, unstructured matrix is not well suited for this and
could easily nullify any advantages associated with the generalities of triangularization procedures.

Furthermore, the use of region adaptive grids, for example, the composite approach suggested
by Eiseman (108], the block approach of Lee and Rubbert [109-110], the embedded grid approach demonstrated
by Boppe [111-112], or the grid interfacing procedure presented by Atta [113], could be used to adequately
cluster grid points about complex geometrical topologies. In this approach the domain of interest would be
divided into several subdomains each with a simple topology and its own coordinate transformation. The
well-ordered (highly vectorizable), body-conforming characteristics would be retained in each subdomain.
Because additional computational expense would be introduced at the subdomain boundaries, the number of
subdomains should be minimized, for example, one subdomain about each major component. An aircraft grid
might be composed of three subdomain types, wing/fuselage, pylon/nacelle, and horizontal/vertical tail
surfaces. Much research needs to be completed before the ultimate grid generation procedure becomes
apparent for truly general transonic flow field computation.

Another possible alternative is to use a coordinate transformation as the basis for triangula-
rization. The simple matrix structure is retained, however, some generality in treating complex geometrical
topologies is lost. Sopne finite element researchers have utilized this approach including Eberle [11-13]
and Deconink and Hirsch (16]. Because the vast majority of grid generation research seems to be based on
the coordinate transformation approach, only this type of grid generation procedure will be discussed in
the following sections. Specific topics include: (i) analytic transformation procedures such as conformal
mappings, (2) numerical transformation procedures including techniques based on elliptic and hyperbolic
partial differential equations, and (3) algebraic or geometric procedures based on parametric surfaces or
interpolation techniques.

6.2.1 Analytical grid m.pping procedures

Analytical mapping procedures can be simple, for example, involving only a stretching or
shearing of the coordinate system, or they can be more complicated, for example, conformal mappings. The
stretching and shearing transformations can be useful for simple geometries, for example, standard blunt
bodies, or simple fuselage cross sections, but generally are not sufficient by themselves for more complex
airfoil and wing calculations. Conformal mappings do have the generality required for providing good
quality, economical grids for reasonably complex two-dimensional geometries. Many researchers have utilized
conformal mappings to generate arbitrary, orthogonal meshes (or nearly orthogonal meshes when a sheared
conformal mapping procedure is used) for a host of two-dimensional applications. A few examples include
Garabedian and Korn (114] for an airfoil; Kacprzynski [115] for an airfoil between wind tunnel walls;
Ives [116] for the multi-element airfoil; Caughey and Jameson [91] and Chen and Caughey (117] fir the
axisymmetric nacelle, with and without center hub; and Ives and Liutermoza (118] for axial-flow turbo-
machinery cascade applications.

The theory behind conformal mapping techniques is governed by analytic functions of a single
complex variable. This theory is well developed, but fundamentally limited to applications in two space
dimensions. Nevertheless, some researchers have found ways to use conformal mapping techniques to assist
in generating grids for three-dimensional problems. A few examples are given by Jameson [119] for wings,
Jameson and Caughey [6] and Caughey and Jameson (7,120] for wing/body combinations, and Ives and Menor
(121] for three-dimensional inlet and inlet center-body configurations. Other examples are provided in
references 122-123. The basic approach utilized for three-dimensional problems is to generate a series of
two-dimensional grids using conformal or sheared-conformal mappings Then these two-dimensional grids are
"stacked" together in the third dimension to form the final three-dimensional grid. This approach has
virked well for geometries with smooth variation in the third dimension but lacks generality. Conformal
mapping procedures will continue to be used successfully in a wide variety of applications, however, the
anticipated trend for grid generation procedures will be away from such techniques and toward the moregeneral (although presently less well developed) numerical aad/or geometric mapping procedures.

6.2.2 Numerical grid mapping procedures I K
Perhaps the most popular new techique for grid g'.-.eration is the numerical approach. The

central idea associated with this technique is to establish a set of curvilinear coordinates by requiring
that they be solutions to specially constructed partial differential equations (PDEs), either elliptic or
hyperbolic in type. The properties of these PDEs are such that smooth and regular finite-difference grids

(or perhaps finite-element grids) are generated. Coordinate lines of the same family do not cross and
coordinate lines of opposite families are orthogonal or nearly orthogonal. Dirichlet boundary conditionsare specified such that the body automatically becomes a constant coordinate line in the physical domain.

This guarantees a one-to-one mapping in which the mesh is well-ordered and body-fitted. Mechanisms for
achieving extremely general mesh control exist through boundary condition specification and through the
control of various arbitrary coefficients depending upon exactly which formulation is used. The numerical
grid mapping procedure is generally valid for bc~h two- and three-dimensional problems involving either
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steady or unsteady flows.
The first step involves the transformation of the flow field governing equations from the

physical domain to the computational domain. For a two-dimensional steady airfoil problem this transforma-
tion can be expressed in the form

& = C(x,y) I
= n(x,y) (650,

where x and y represent the physical domain coordinates, for example, Cartesian coordinates, and t and n
represent the computational domain coordinates (see Fig. 6.16). Using the general transformation of equa-
tion (6.50) any PDE in conservation-law form can be transformed from the physical domain to the computa-
tional domain with the conservation-law form maintained. This is an important point because most differ-
encing schemes use shock capturing procedures that depend on conservation-law form to provide unique shock
wave solutions. For more discussion on conservation-law form see references 124-127.

Many numerical grid generation variations have been developed for a wide variety of applica-
tions. Some of the earlier examples, in which Laplace's equation (or a modification of Laplace's equation)
was used as the base PDE include: Winslow [128], Chu [129], Amsden and Hirt [130], Godunov and Prokopor
[131], and Thompson, et al. [132-134]. The approach formulated by Thompson is perhaps the most widely used
numerical grid generation procedure. In this approach Poisson's equation is used to define the transforma-
tion and is given by

Cxx + Cyy = P(C,n) (6.51a)

nxx + nyy = Q(C,n) (6.51b)

The P and Q right-hand-side quantities are defined as a sum of exponential terms each with several free
coefficients. These coefficients can be adjusted by the user to provide different types of mesh size and
skewness control. Equations (6.51) are transformed to (and solved in) the computational domain, that is,
the roles of C, n and x, y are interchanged such that C, n become the independent variables and x, y are
the dependent variables. Thus all numerical computations are performed in the more-convenient, equally-
spaced computational domain (see Fig. 6.16b).

The numerical solution of the resulting transformed equations is accomplished by first
replacing all derivatives by standard second-order-accurate finite differences. The spatial increments,
AC and An, can arbitrarily be chosen (for example, A& = An = 1.0) and therefore are simply omitted. Once
boundary and initial values of x and y are specified the final interior values can be computed by standard
relaxation procedures. For many applications a simple successive overrelaxation (SOR) scheme is used, but
other techniques are available. For instance, Holst (91 uses an ADI iteration scheme for generating grids
about airfoils, and Camarero and Younis [135] use a multigrid technique for generating grids about two-
dimensional cascades. In both of these cases significant improvements in computational efficiency relative
to SOR schemes are obtained.

An example grid from Thompson, et al. [134] about a Karman-Trefftz airfoil with flap is shown
in figure 6.17. To simplify the presentation only the portion of the grid near the airfoil is shown. The
actual outer boundary for this calculation was circular with a radius of ten chord lengths. In this example
the P and Q forcing terms have been utilized to attract the n = constant coordinate lines to the airfoil
surface, thus providing a good grid point resolution on the concave portion of the airfoil. In other more
recent applications, the numerical elliptic-solver approach has been used to develop relatively complex
grids about wing/fuselage configurations, Yu [136] and Thomas [137], and about wing/fuselage/pylon/nacelle
configurations by Yu [138].

An important aspect associated with these numerical elliptic-solver techniques is that they
have a high degree of controllability. The vast number of coefficients contained in the P and Q terms
(four for each grid point in the reference 132 formulation) is an indication of the staggering amount of
control available to the user. There is an obvious difficulty associated with this flexibility, namely,
how can it, in a general and simple way, be made available to the user? This is a problem, which poses a
difficulty in two dimensions, and becomes seemingly insurmountable in three dimensions.

Several researchers have experimented with different aspects of this problem including Thomas
and Middlecoff [139] and Steger and Sorenson [140-141]. In the latter approach a simplified form of the
P and Q terms was adopted and is given by

P = Po(&)e-a(n-n1 ) (6.52a)

Q = Qo( )-b (
n
-n )  (6.52b)

where ni corresponds to the nmin inner boundary (see Fig. 6.16), Po and Qo are sets of constants which
vary in the 4 direction on the min boundary, and a and b are constants which control the rate of decay of
the P and Q forcing terms into the mesh interior. Thus, application of the forcing terms is restricted only

4to nmin, which is primarily where the control is desired. Steger and Sorenson recognized that two types of
control are desired: (I) control of the spacing between n = n1, and n = n2 (that is, the first n = constant
line away from the inner boundary) while at the same time maintaining continuity between the lines n, n2,
n3, etc., and (2) control of the angle with which & = constant lines intersect the inner boundary. These
two conditions can be expressed mathematically by

= (x2 + y)i = As (6.53)
n dc n

and

VC.Vn = x&x + Y Yn = IVCIlVnlcosB (6.54)

where s is the arc length along the n lines which intersect the body and 8 is the angle of intersection. hi
The condition for orthogonality is 6 = w/2. Other angle specifications are possible by setting 6 to values
other than w/2. By utilizing equations (6.52), (6.53) and (6.54) as well as the Dirchlet boundary condi-
tions in x and y, expressions for P0 and Qo can be derived. With these expressions, values of Po(E) and
Qo(C), obtained by s 'cification of As(C) and 8(C), can be determined. Therefore, the simplification
introduced in reference 140, is to replace the specification of arbitrary abstract coefficients, Po(C) and

2i
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Q0(W, with the specification of simple, understandable quantities, As and e.
An example of' this technique used to generate a grid about a highly cambered 12 to 1 ellipse

is shown in figures 6.18 and 6.19. Figure 6.18 shows global and trailing edge detail of the Laplacian
mesh (that is, no control), while figure 6.19 shows the same views with control (e = ar/2 and As =0.005).
Note the poor grid quality for the case with no control, especially in the concave portion of the ellipse.
The case with control, however, produces a nearly orthogonal grid at the body with a nearly uniform As
distributi- closely approximating the desired value of 0.005.

Other numerical mapping procedures based on hyperbolic PDEs have been reported in the litera-
ture but are less well developed than the elliptic procedures. ExampleF of this type of grid generation
procedure include Starius (142] and Steger and Chaussee (143]. In the latter work the PDES used to
numerically define the transformation of equation (6.50) and therefore the finite-difference mesh are
given by

V&.Vn Xfl + y ny =(6.55)

xy yx

Orthogonality is achieved by simply setting 4 to zero, and J represents the Jacobian of the transformaticr
(that is, effectively the grid cell area). In this formulation both 4 and J are user-specified functions.
This provides a great deal of controllability which is perhaps more direct and easier to implement than in
most elliptic PDE formulations. Direct specification of J produces a well-behaved mesh that does not cross
over on itself in all but the most severe cases. Because this system of equations is hyperbolic in n, a
solution can simply be obtained by marching away from initial data specified on the inner boundary.
Because iteration is not required, computation time for this technique is very small.

A disadvantage of this technique lies in the lack of direct control over the position and
distribution of grid points on the outer boundary (n = nmax). However, for external aerodynamic applica-
tions this limitation is not severe. Other more fundamental problems lie in the treatment of surface
singularities or extension to three-dimensions. Because of the hyperbolic nature of the grid transforma-
tion governing equations, any singulariti._ imposed in the n = %min initial data, for example, a slope
discontinuity in the geometry, will propagate in the n direction and perhaps cause problems in the grid
interior. Formulation of a suitable algorithm in three dimensions is more difficult because the orthogo-
nality condition (equation (6-55)) expands to three equations. Thus a system of four independent equations
is created where only three can be used, one for each independent spatial coordinate.

Much work needs to be completed before numerical grid generation schemes based on hyperbolic
PDEs can be used routinely for three-dimensional calculations. However, in the future this grid generation
procedure may become the best for external aerodynamic applications.

6.2.3 Geometric grid mapping procedures

The final set of grid mapping procedures discussed in this chapter utilizes an algebraic or
geometric construction approach for generating grids. This technique has recently received much attention
and promises to develop into a viable approach. Generally speaking, these procedures are relatively effi-

* cient, requiring only small amounts of computer time relative to the elliptic-equation grid generation
approach, and have general capabilitieg regarding coordinate line control. In addition, this type of
procedure seems to be general enough for easy extension into three dimensions. Eiseman has presented
geometric grid generation techniques for several two-dimensional configurations (144-145], including a
cascade geometry application and a three-dimensional wing configuration application (146]. The control
available with these schemes is quite extensive and allows specification of the grid point position and

* angle at both the inner and outer boundaries. Even higher degrees of control are possible including differ-
ent types of clustering or special types of grid smoothing. These newer more elaborate types of grid con-
trol can be applied to 1Vcal regions of the mesh without affecting other regions. In theory these local
controls could be used to smoothly interface two grids with distinctly different characteristics. Thus,
the idea of "patched" systems of grids for complex aerodynamic configurations is greatly enhanced. The
mathematical aspects of this new geometrical grid generation procedure are developed by Eiseman (147-148].
To date some testing of these theories has been conducted, but little experimentation with flow solver
algorithms applied to realistic geometries has been reported. Nevertheless this technique does seem to cope
with many of the problems associated with other grid generation types, and therefore, widespread usage in a
variety of grid generation applications is anticipated.

Another geomtrical grid generation procedure has been presented by McNally [149] refined by
Graves [150] and used to solve a variety of hypersonic blunt-body problems by Hamilton and Graves (151].
Completely general specification of body geometry is allowed by this technique. The grid is generated
quickly and in a straightforward manner by using a two-step procedure which marches away from the body
surface. The first step is used to entablish the tangential-coordinate family, and the second step is used
to establish the opposite normal-coordinate family. The resulting grid is orthogonal although nonorthogonal

4 ' versions are also available. In many senses this procedure resembles the hyperbolic schemes discussed in
* the previous section (Sect. 6-P,2). However, one important difference does exist. The grid resulting from

this geometrical approach is constructed such that both the inner and outer boundaries (for the blunt body
problem, these boundaries correspond to the body surface and the bow shock wave) can be specified as con-
stant coordinate lines in the computational domain. In the hyperbolic PDE procedure of reference 143 only -

the inner boundary position could be specified.
Another promising geometrical grid generation procedure is the technique introduced by Erikson

(152] and used by Rizzi and Erikson (153] to solve transonic flow fields about wing/body configurations.
This procedure, which can be viewed as a generalized spline interpolation technique, generates a finite-
difference grid in two or three dimensions by interpolating geometric data from the domain boundaries. The
geometric data required includes boundary coordinates and derivatives. In some cases outer domain bounda-
ries can automatically be determined by the geometric transformation procedure and therefore, do not
necessarily have to be specified. This procedure is computationally efficient and has good coordinate line
control properties. For instance, with proper specification of the derivative boundary conditions nearly
orthogonal local regions of the grid can be generated.

The algebraic or geometric grid generation procedure has only recently entered the CTA field
and therefore its ultimate role is difficult to predict. However, the general properties of this broad
class of grid mapping procedures (for example, flexibility, Lomputational. efficiency, and controllability)
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suggest a large increase iu, the usage of this procedure for generating the complicated grids associated
with more complete aircraft configurations.
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Fig. 6.17 Finite-difference grid about a Karman-Trefftz
airfoil with flap, (Thompson, et al. [131)

Fig. 6.18 Pinite-difference grid about a highly cambered
12:1 ellipse, no control, (Sorenson end Steger [141])

Fig. 6. 19 Finite-difference grid about a highly cambered
12:1 ellipse, control terms activated,
(Sorenson and Steger [14)]
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7. CONCLUDING REMARKS AND FUTURE PROSPECTS

Having discussed, to some extent, the problems and solutions, possibilities and limitations,
achievements and developments in current computational transonic aerodynamics, it seems appropriate to try
to put these in a future perspective. In doing so, figure 7.1, taken from a presentation of ?.E. Rubbert
is most helpful.

In setting up a time scale for the evolution of transonic computational fluid dynamics Rubbert
distinguishes 5 stages. The first two of these represent the glamorous days of innovation, scientific
papers and demonstration. The next two stages are those of "sweat, blood and tears"; this is the period of
production code development and increasing application in a research/design environment. The last stage is
that of general acceptance; the production code has acquired a settled position in the engineering environ-
ment and application has become a routine matter.

It would seem that with transonic computational aerodynamics we are about to move from stage II
into stage III (at least as far as analysis methods are concerned; design/inverse methods seem to have only
just entered the "gee whiz!" phase). However, a prerequisite for entering stage III with full momentum is
that the problem of convergence acceleration in the general 3-D case with irregular grids be solved satis-
factorily.

At least for transport aircraft applications methods for solving the full potential equation
will probably remain to provide the best "value for money". Whether the additional possibilitiis offered
by the Euler equations is worth the added complexity remains to be seen.

It is expected that the majority of the production codes to be developed will be of the finite
volume type with block-structured grids. Generation of grids for the various aircraft components will
require a major effort. Another important effort will have to be put into the development of strong viscous
interaction algorithms.

A very important point to consider during production code development as well as application
is that for optimal functioning computational aerodynamic software systems and aerodynamic analyses/design
procedures must be tuned to each other, [2]. This means that the computational fluid dynamicist/code
designer must be prepared to look upon his product as a small part of a much bigger information system and
tailor his product accordingly. The user/aerodynamicist, on the other hand, must be prepared to adapt his
engineering procedures to enable the optimal use of the new possibilities that are being created by the
advances in computational aerodynamics.

It is expected, [2], that by 1990, these advances, together with those in computer technology,
will have led to a two orders of magnitude increase in computational productivity. Development of the
software necessary for controlling and digesting the immense amounts of information that will be generated
through aerodynamic computations most likely will become another pacing item in computational aerodynamics.
We must expect that the stage of matuvity (V in Fig. 7.1) cannot be reached without solving this informatics
problem.
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